Tentative Calendar for Math 46300/A6300, Section GH, Spring 2025

This calendar is extremely tentative, but should give a general idea of what topics we will cover.

Course Textbooks:

Date Tentative class plan:
Mon, Jan 27 Welcome!
Begin Munkres Chapter 1: Set Theory and Logic
Munkres §3: Relations
Munkres §7: Countable and Uncountable Sets
Munkres §8: The Principle of Recursive Definition
Wed, Jan 29 No classes scheduled (No office hours)
Mon, Feb 3 Finish Munkres §7: Countable and Uncountable Sets
Begin Munkres Chapter 2: Topological Spaces and Continuous Functions
Munkres §12: Topological Spaces
Munkres §13: Basis for a Topology
Wed, Feb 5 Finish Munkres §13: Basis for a Topology
Munkres §14: The Order Topology
Munkres §16: The Subspace Topology
Mon, Feb 10 Munkres §15: The Product Topology on X x Y
Munkres §17: Closed Sets and Limit Points
Wed, Feb 12 College Closed (No office hours)
Mon, Feb 17 College Closed
Tue, Feb 18 Classes follow a Monday schedule.
Munkres §18: Continuous Functions
Munkres §19: The Product Topology
Wed, Feb 19 Munkres §19: The Product Topology
Munkres §20: The Metric Topology
Mon, Feb 24 Munkres §20: The Metric Topology
Wed, Feb 26 Munkres §21: The Metric Topology (continued)
Mon, Mar 3 Possible lecture/review.
Wed, Mar 5 Midterm 1.
Thu, Mar 6 Classes follow a Wednesday schedule.
Munkres §9: Infinite Sets and the Axiom of Choice
Munkres §10: Well-Ordered Sets
Mon, Mar 10 Begin Munkres §22: The Quotient Topology
Wed, Mar 12 Finish Munkres §22: The Quotient Topology
Mon, Mar 17 Begin Munkres Chapter 3: Connectedness and Compactness
Munkres §23: Connected Spaces
Munkres §24: Connected Subspaces of the Real Line
Wed, Mar 19 Munkres §26: Compact Spaces
Munkres §27: Compact Subspaces of the Real Line
Mon, Mar 24 Munkres §28: Limit Point Compactness
Munkres §29: Local Compactness
Wed, Mar 26 Begin Munkres Chapter 4: Countability and Separation Axioms
Munkres §30: The Countability Axioms
Mon, Mar 31 No classes scheduled
Wed, Apr 2 Munkres §31: The Separation Axioms
Mon, Apr 7 Possible lecture/review.
Wed, Apr 9 Midterm 2.
Mon, Apr 14 Spring Break
Wed, Apr 16 Spring Break
Mon, Apr 21 Munkres §32: Normal Spaces
Munkres §33: The Urysohn Lemma
Wed, Apr 23 Munkres §34: The Urysohn Metrization Theorem
Mon, Apr 28 Begin Munkres Chapter 9: The Fundamental Group
Munkres §51: Homotopy of Paths
Wed, Apr 30 Munkres §52: The Fundamental Group
Mon, May 5 Munkres §53: Covering Spaces
Wed, May 7 Munkres §54: The Fundamental Group of the Circle
Mon, May 12 Munkres §55: Retractions and Fixed Points
Wed, May 14 Munkres §58: Deformation Retracts and Homotopy Type

The Final Exam will be held when the final exam is scheduled by the college: Monday, May 19th from 6:00pm to 8:15pm.


Relevant links:
Return to the course website
Last modified on March 26, 2025.
[check html] [check css]