Math 32404: Advanced Calculus II: Midterm 1 Review

Material Covered: §8.2-8.5

Definitions. You will be asked to define several terms on the test. **These terms all have one definition, as given in the book. You are expected to know this definition.** The following is a list of terms which might appear. (Others might appear as well).

norm on a vector space, euclidean norm, operator norm, matrix, critical point, Lipschitz function (Example 7.5.13), change of basis, sup or max norm (Exercise 8.2.3), L^1 norm (Exercise 8.2.4), eigenvalue and eigenvector, differentiable, derivative, partial derivative, gradient, curve, tangent vector, Jacobian determinant, continuously differentiable or C^1 , locally invertible

Comments

- The book defined eigenvalue on page 33, but didn't seem to define eigenvector. Supposing A is an $n \times n$ matrix, a complex number $\lambda \in C$ is an *eigenvector* if there is a non-zero vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$. Any non-zero vector x such that there is a $\lambda \in \mathbb{C}$ satisfying $Ax = \lambda x$ is called an *eigenvector*.
- The book uses the term "locally invertible" but didn't formally define it. A function between metric spaces $f : X \to Y$ is *locally invertible* at $x \in X$ if there is an open set $U \subset X$ such that $x \in U$, f(U) is open, and $f|_U : U \to f(U)$ is a bijection. Local invertibility is a consequence of the Inverse function theorem.
- The book didn't seem to formally define critical point. A *critical point* of a differentiable function f is an x in the domain such that Df(x) is zero.

Results you should know. Below is a list of results you should know, and be able to apply. Results I think you should be able to prove are in bold. You will be asked to prove at least one of these results on the midterm.

Cauchy-Schwarz inequality (Lemma 7.1.4 and Thm 8.2.2), Properties of the operator norm in finite dimensional spaces (Props 8.2.4-5), The map $A \mapsto A^{-1}$ is continuous (Prop 8.2.6), Properties of the determinant (Props 8.2.8-10), Uniqueness of the derivative (Prop 8.3.2), Differentiable implies continuous (Prop 8.3.5), The derivative is a linear operator (Prop 8.3.6), Matrix representation of the derivative (Prop. 8.3.9), Bounded derivative on a convex domain implies Lipschitz (Prop 8.4.2), Polynomials are C^1 , Inverse function theorem, Implicit function theorem

Example questions: These are some problems I have written for exams in the past.

1. Are the functions below differentiable at 0? Justify your answer with a proof.

 $\mathbf{f}(x, y, z) = \sqrt[3]{xyz}$ and $\mathbf{g}(x, y, z) = \sqrt[3]{x^2yz}$.

- 2. Let g(a, b, c) be a C^2 function $\mathbb{R}^3 \to \mathbb{R}$. Let $f(x, y) = g(x^2, xy, y^2)$.
 - (a) Compute $\frac{\partial f}{\partial x}(x, y)$ in terms of x, y and partial derivatives of g.
 - (b) Compute $\frac{\partial^2 f}{\partial y \partial x}(x, y)$ in terms of x, y and partial derivatives of g.
- 3. (a) Complete the following definition. Let $S \subset \mathbb{R}^n$ be an open set. The function $f: S \to \mathbb{R}$ is differentiable at $\mathbf{a} \in S$ if
 - (b) Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies f(0,0) = 0 and

$$x - x^2 - y^2 \le f(x, y) \le x + x^2 + y^2$$
 for all $(x, y) \in \mathbb{R}^2$.

Prove that f is differentiable at (0, 0).

- 4. Show that the two side-lengths of an isosceles triangle can be expressed as a function of the perimeter and area of the triangle locally near any non-equilateral isosceles triangle.
- 5. Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a differentiable function. Define g(x, y) = |f(x, y)| where $|\cdot|$ denotes the Euclidean norm.
 - (a) Give a formula for $\nabla g(x, y)$ at any point (x, y) for which $f(x, y) \neq (0, 0)$. Your formula should be in terms of x, y, the entries of f(x, y), and the partial derivatives of the two component functions of f.
 - (b) Show that if Df(x, y) is the zero matrix, then (x, y) is a critical point of g. That is, show that Df(x, y) = 0 implies that Dg(x, y) = 0.
- 6. Let $\alpha : \mathbb{R} \to \mathbb{R}^3$ be a parameterized C^1 path in the plane z = 0 and let $\beta : \mathbb{R} \to \mathbb{R}^3$ be a parameterized C^1 path in the plane z = 1. Define

 $F : \mathbb{R}^3 \to \mathbb{R}^3$ by $F(s,t,z) = \alpha(s) + z(\beta(t) - \alpha(s)).$

Then, when s and t are held constant, the map $z \mapsto F(s,t,z)$ parameterizes the line joining $\alpha(s)$ to $\beta(t)$.

- (a) Use the Inverse Function Theorem to show that if $z_0 \notin \{0,1\}$ and $\alpha'(s_0)$ and $\beta'(t_0)$ are not parallel, then F is invertible in a neighborhood of the point (s_0, t_0, z_0) in the domain.
- 7. Let $\mathbf{G}(u, v) = (uv 3, u^2 + 2v).$
 - (a) Suppose V is an open neighborhood of $(-3, 6) \in \mathbb{R}^2$ and that $\mathbf{H} : V \to \mathbb{R}^2$ is a map so that $\mathbf{G} \circ \mathbf{H}(x, y) = (x, y)$ for all $(x, y) \in V$. (**H** is a local inverse to **G** at (0, 3).) Find the matrix of partial derivatives $D\mathbf{H}(-3, 6)$.
 - (b) Let B_{ϵ} denote the open ball of radius ϵ at (0,3). Estimate the quantity

Area
$$\mathbf{G}(B_{\epsilon})/\text{Area } B_{\epsilon}$$

for ϵ small. (Concretely, what is the limit of this ratio as $\epsilon \to 0$?)