BOUNDING THE DERIVATIVE

W. PATRICK HOOPER

This is a slightly different proof of the Lebl's Proposition 8.4.2.

In the hopes of avoiding confusion, for $f : \mathbb{R}^n \to \mathbb{R}^m$, I will use $Df \in L(\mathbb{R}^n, \mathbb{R}^m)$ to denote the derivative of a linear map. I will use something like $h'(x) \in \mathbb{R}$ to denote the derivative of a function $h : \mathbb{R} \to \mathbb{R}$. As we discussed in class, the corresponding linear map Dh(x) is the map $t \mapsto h'(x)t$.

To avoid confusion between the one-variable derivative of a function $h : \mathbb{R} \to \mathbb{R}$ and the derivative of a

Proposition 1. Let $U \subset \mathbb{R}^n$ be open and convex, let $f : U \to \mathbb{R}^m$ be differentiable and assume that

$$\|Df(p)\| \le M \quad for \ all \ p \in U.$$

Then f is M-Lipschitz:

$$||f(q) - f(p)|| \le M ||q - p||$$
 for all $p, q \in U$.

Proof. Fix $p, q \in U$. Observe that if f(p) = f(q), then the conclusion is true because ||f(q) - f(p)|| = 0. So we will assume for the remainder of the proof that $f(p) \neq f(q)$.

Let $\ell : \mathbb{R} \to \mathbb{R}^n$ be the function defined by $\ell(t) = (1-t)p + tq$. Since ℓ is continuous and U is open and convex and contains p and q, there is an open interval I containing [0, 1] such that $\ell(I) \subset U$. Observe that ℓ is affine linear, so

$$D\ell(t): s \mapsto s(q-p) \text{ for every } s, t \in \mathbb{R}.$$

Then we also have that $||D\ell(t)|| = ||q - p||$ for every $t \in \mathbb{R}$; see Exercise 8.2.6.

Now let $u = \frac{1}{\|f(q) - f(p)\|} (f(q) - f(p))$ which is a well defined unit vector since $f(p) \neq f(q)$. Note that the dot product with u gives the length of the perpendicular projection of a vector onto a line parallel to u. We define

$$g: \mathbb{R}^m \to \mathbb{R}$$
 by $g(v) = u \cdot \mathbf{v}$.

The map g is linear, so Dg(v) = g for every $v \in \mathbb{R}^m$. Observe that ||Dg(v)|| = 1 for every v; again see Exercise 8.2.6.

Finally, define $h : \mathbb{R} \to \mathbb{R}$ by $h = g \circ f \circ \ell$. Observe that $h(0) = u \cdot f(p)$ and $h(1) = u \cdot f(q)$, so

$$h(1) - h(0) = u \cdot (f(q) - f(p)) = \frac{1}{\|f(q) - f(p)\|} (f(q) - f(p)) \cdot (f(q) - f(p))$$
$$= \frac{1}{\|f(q) - f(p)\|} \|f(q) - f(p)\|^2 = \|f(q) - f(p)\|.$$

By the Mean Value Theorem, there is a $t \in (0, 1)$ such that

(1)
$$||f(q) - f(p)|| = h(1) - h(0) = \frac{h(1) - h(0)}{1 - 0} = h'(t).$$

Date: March 20, 2024.

Since Dh(t) is the linear map $s \mapsto h'(t)s$, we have ||Dh(t)|| = |h'(t)|. Applying the chain rule, we have

$$Dh(t) = Dg(f \circ \ell(t)) \circ Df(\ell(t)) \circ D\ell(t).$$

The operator norm of a composition of linear maps is less than or equal to the product of the operator norms (see Proposition 8.2.5), so

(2)
$$||Dh(t)|| \le ||Dg(f \circ \ell(t))|| \cdot ||Df(\ell(t))|| \cdot ||D\ell(t)|| \le 1 \cdot M \cdot ||q - p||.$$

Combining equations (1) and (2), we see that

$$||f(q) - f(p)|| = |h'(t)| = ||Dh(t)|| \le M \cdot ||q - p||.$$

as desired.

THE CITY COLLEGE OF NEW YORK, NEW YORK, NY, USA 10031 *Email address:* whooper@ccny.cuny.edu