BOUNDING THE DERIVATIVE

W. PATRICK HOOPER

This is a slightly different proof of the Lebl's Proposition 8.4.2.
In the hopes of avoiding confusion, for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, I will use $D f \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ to denote the derivative of a linear map. I will use something like $h^{\prime}(x) \in \mathbb{R}$ to denote the derivative of a function $h: \mathbb{R} \rightarrow \mathbb{R}$. As we discussed in class, the corresponding linear map $\operatorname{Dh}(x)$ is the map $t \mapsto h^{\prime}(x) t$.

To avoid confusion between the one-variable derivative of a function $h: \mathbb{R} \rightarrow \mathbb{R}$ and the derivative of a

Proposition 1. Let $U \subset \mathbb{R}^{n}$ be open and convex, let $f: U \rightarrow \mathbb{R}^{m}$ be differentiable and assume that

$$
\|D f(p)\| \leq M \quad \text { for all } p \in U .
$$

Then f is M-Lipschitz:

$$
\|f(q)-f(p)\| \leq M\|q-p\| \quad \text { for all } p, q \in U
$$

Proof. Fix $p, q \in U$. Observe that if $f(p)=f(q)$, then the conclusion is true because $\|f(q)-f(p)\|=0$. So we will assume for the remainder of the proof that $f(p) \neq f(q)$.

Let $\ell: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be the function defined by $\ell(t)=(1-t) p+t q$. Since ℓ is continuous and U is open and convex and contains p and q, there is an open interval I containing $[0,1]$ such that $\ell(I) \subset U$. Observe that ℓ is affine linear, so

$$
D \ell(t): s \mapsto s(q-p) \quad \text { for every } s, t \in \mathbb{R}
$$

Then we also have that $\|D \ell(t)\|=\|q-p\|$ for every $t \in \mathbb{R}$; see Exercise 8.2.6.
Now let $u=\frac{1}{\|f(q)-f(p)\|}(f(q)-f(p))$ which is a well defined unit vector since $f(p) \neq f(q)$. Note that the dot product with u gives the length of the perpendicular projection of a vector onto a line parallel to u. We define

$$
g: \mathbb{R}^{m} \rightarrow \mathbb{R} \quad \text { by } \quad g(v)=u \cdot \mathbf{v}
$$

The map g is linear, so $D g(v)=g$ for every $v \in \mathbb{R}^{m}$. Observe that $\|D g(v)\|=1$ for every v; again see Exercise 8.2.6.

Finally, define $h: \mathbb{R} \rightarrow \mathbb{R}$ by $h=g \circ f \circ \ell$. Observe that $h(0)=u \cdot f(p)$ and $h(1)=u \cdot f(q)$, so

$$
\begin{aligned}
h(1)-h(0) & =u \cdot(f(q)-f(p))=\frac{1}{\|f(q)-f(p)\|}(f(q)-f(p)) \cdot(f(q)-f(p)) \\
& =\frac{1}{\|f(q)-f(p)\|}\|f(q)-f(p)\|^{2}=\|f(q)-f(p)\| .
\end{aligned}
$$

By the Mean Value Theorem, there is a $t \in(0,1)$ such that

$$
\begin{equation*}
\|f(q)-f(p)\|=h(1)-h(0)=\frac{h(1)-h(0)}{1-0}=h^{\prime}(t) \tag{1}
\end{equation*}
$$

Date: March 20, 2024.

Since $D h(t)$ is the linear map $s \mapsto h^{\prime}(t) s$, we have $\|D h(t)\|=\left|h^{\prime}(t)\right|$. Applying the chain rule, we have

$$
D h(t)=D g(f \circ \ell(t)) \circ D f(\ell(t)) \circ D \ell(t) .
$$

The operator norm of a composition of linear maps is less than or equal to the product of the operator norms (see Proposition 8.2.5), so

$$
\begin{equation*}
\|D h(t)\| \leq\|D g(f \circ \ell(t))\| \cdot\|D f(\ell(t))\| \cdot\|D \ell(t)\| \leq 1 \cdot M \cdot\|q-p\| . \tag{2}
\end{equation*}
$$

Combining equations (1) and (2), we see that

$$
\|f(q)-f(p)\|=\left|h^{\prime}(t)\right|=\|D h(t)\| \leq M \cdot\|q-p\| .
$$

as desired.

The City College of New York, New York, NY, USA 10031
Email address: whooper@ccny.cuny.edu

