Topological_conjugacy_1

February 4, 2019

1 Topological Conjugacy for homeomorphisms of \mathbb{R}.

Let $f: I \rightarrow I$ and $g: J \rightarrow J$ be continuous maps. We say they are topologically conjugate if there is a homeomorphism $h: I \rightarrow J$ so that $g \circ h(x)=h \circ f(x)$ for all $x \in I$.

We will demonstrate the idea behind the following result:
Theorem. Suppose $I=(a, b)$ and $J=(c, d)$ are intervals in \mathbb{R}. Suppose $f: I \rightarrow I$ and $g: J \rightarrow J$ are orientation-preserving homeomorphisms so that ${ }^{*} f(x)>x$ for each $x \in I$, and ${ }^{*} g(y)>y$ for each $y \in J$. Then f and g are topologically conjugate.

To demonstrate this, we will consider two such maps.

```
In [1]: f(x) = sqrt(2*x-x^2) # Consider over the interval (0,pi)
    plot(f, 0, 1, aspect_ratio=1) + plot(x,(x, 0, 1), color="red")
```

Out [1] :

In [2]: \# Here we work out the inverse map
$x=\operatorname{var}(" x ")$
$y=\operatorname{var}(" y ")$
assume(y>0) \# Used to help Sage find the solution we want below. assume ($\mathrm{y}<1$)
$\operatorname{show}((f(x)==y) . \operatorname{solve}(x))$
$\left[\mathrm{x}==-\operatorname{sqrt}\left(-\mathrm{y}^{\wedge} 2+1\right)+1, \mathrm{x}==\operatorname{sqrt}\left(-\mathrm{y}^{\wedge} 2+1\right)+1\right]$

Note that the inverse must be the first one since the second takes values greater than one.
In [3]: \# Here we define the inverse map $\operatorname{finv}(y)=-\operatorname{sqrt}\left(-y^{\wedge} 2+1\right)+1$

Lets plot f^{-1} with f to be sure.
In [4]: plot(finv, 0, 1, color="green", aspect_ratio=1) + plot(f,(x,0,1), color="blue") Out [4] :

In [5]: $\mathrm{g}(\mathrm{x})=1 / 2 *(\mathrm{x} *(3-\mathrm{x}))$ \# Consider over the interval ($0, \mathrm{pi}$)

$$
\text { plot }(g, 0,1, \text { aspect_ratio=1) + plot(x, }(x, 0,1) \text {, color="red") }
$$

Out [5] :

In [6]: \# Here we work out the inverse map
x=var("x")
y=var("y")
assume ($\mathrm{y}>0$) \# Used to help Sage find the solution we want below.
assume ($\mathrm{y}<1$)
($g(x)==y$).solve (x)
Out [6]: [x == -1/2*sqrt ($-8 * y+9$) $+3 / 2$, $x==1 / 2 * \operatorname{sqrt}(-8 * y+9)+3 / 2]$
In [7]: $\operatorname{ginv}(y)=-1 / 2 * \operatorname{sqrt}(-8 * y+9)+3 / 2$
In [8]: plot(ginv, 0, 1, color="green", aspect_ratio=1) + plot(g,(x,0,1), color="blue") Out [8] :

1.0.1 Defining the topological conjugacy:

First we pick a points a_{f} and a_{g} in the domains of f and g :
In [9]: $\begin{aligned} \text { a_f } & =1 / 2 \\ a_{-} g & =1 / 2\end{aligned}$
We define $b_{f}=f\left(a_{f}\right)$ and $b_{g}=g\left(a_{g}\right)$:
In [10]: b_f = $f\left(a_{-} f\right)$
print("b_f = \%s"\%b_f)
b_g = g(a_g)
print("b_g = \%s"\%b_g)
b_f = $1 / 2 *$ sqrt (3)
b_g $=5 / 8$

The intervals $\left[a_{f}, b_{f}\right)$ is a fundamental domains for f. This means for each $x \in(0,1)$, there is a unique $n \in \mathbb{Z}$ so that $f^{n}(x) \in\left[a_{f}, b_{f}\right)$. Similarly, $\left[a_{g}, b_{g}\right)$ is a fundamental domain for g.

We define a homeomorphism $h_{0}:\left[a_{f}, b_{f}\right) \rightarrow\left[a_{g}, b_{g}\right)$.
In

```
\([11]: h_{-} 0(x)=\left(b \_g-a_{-} g\right) /\left(b \_f-a_{-} f\right) *\left(x-a_{-} f\right)+a_{-} g\)
    show (h_0(x))
    assert h_0(a_f)==a_g \# Prints errors if false.
    assert h_0(b_f)==b_g
```

```
1/8*(2*x - 1)/(sqrt(3) - 1) + 1/2
```

Note that this function is more complex, so we define it using a Python type function. This allows us to use any Python or Sage type expression we want, including if statements and loops.

```
In [12]: def h(x):
    assert 0 < x < 1 # Cause an error if not in the domain of f.
    if a_f <= x < b_f:
            # Use h_0:
            return h_0(x)
    if x >= b_f:
            count = 0
            while x >= b_f: # Apply f^-1 until we land in the fundamental
                x = finv(x) # domain and count the number of times
                count = count + 1 # we apply f^-1.
            assert a_f <= x < b_f
            y = h_0(x) # Move to the domain of g using h_0.
            for i in range(count): # Now apply g to }y\mathrm{ , the same number of times.
                y = g(y)
            return y
        if x < a_f:
            count = 0
            while x < a_f:
                x = f(x)
                count = count + 1
            assert a_f <= x < b_f
            y = h_0(x)
            for i in range(count):
                y = ginv(y)
            return y
In [13]: # Plot h.
    # Note that h is not defined at zero or at one, so
    # we have shrunk the interval we are plotting slightly.
    # Calling plot(h, 0, 1) will give rise to errors.
    plot(h, 0.001, 0.999)
Out [13]:
```


In [14]: \# Check one value larger than b_f: show (h(9/10))
\# Check the conjugacy equation:
$\operatorname{assert}(h(f(9 / 10))==g(h(9 / 10)))$
$-1 / 3200 *((\operatorname{sqrt}(19)-5) /(\operatorname{sqrt}(3)-1)+100) *((\operatorname{sqrt}(19)-5) /(\operatorname{sqrt}(3)-1)-20)$

In [15]: \# Check one value larger than b_f:
show (h(1/4))
\# Check the conjugacy equation:
$\operatorname{assert}(h(f(1 / 4))==g(h(1 / 4)))$
$-1 / 2 * \operatorname{sqrt}(-1 / 2 *(\operatorname{sqrt}(7)-2) /(\operatorname{sqrt}(3)-1)+5)+3 / 2$

We can graphically check the conjugacy. For plot1 we will plot $h \circ f$ and for plot2 we will plot $g \circ h$.

In [16]: plot1 = plot(lambda $x: h(f(x)), 0.001,0.999)$ show(plot1)
plot2 = plot(lambda $\mathrm{x}: \mathrm{g}(\mathrm{h}(\mathrm{x})), 0.001,0.999$, color="red") show(plot2)

In [17]: \# Plot them on top of each other plot1 + plot2

Out [17]:

In [18]: \# Note that h is continuous but not differentiable: def approximate_derivative_of_h(x, epsilon=0.0001): return (h(x+epsilon)-h(x)) / epsilon

In [19]: plot(approximate_derivative_of_h,0.1,0.9)

Out [19]:

By fiddling appropriately with our function $h_{0}(x)$ we could get h to be smooth. The main issue is derivatives at a_{f}. At other points, h is defined to be h_{0} or compositions of h_{0} with powers of f and g. Note that for values slightly bigger than a_{f}, h is given by h_{0}. While for values slightly to the left of a_{f}, h is given by $g^{-1} \circ h_{0} \circ f$. Thus if we want the derivative to match at a_{f}, we would have to have

$$
h_{0}^{\prime}\left(a_{f}\right)=\left(g^{-1}\right)^{\prime}\left(h \circ f\left(a_{f}\right)\right) \cdot h_{0}^{\prime}\left(f\left(a_{f}\right)\right) \cdot f^{\prime}\left(a_{f}\right)=\left(g^{-1}\right)^{\prime}\left(b_{g}\right) h_{0}^{\prime}\left(b_{f}\right) f^{\prime}\left(a_{f}\right)=\frac{f^{\prime}\left(a_{f}\right)}{g^{\prime}\left(a_{g}\right)} h_{0}^{\prime}\left(b_{f}\right)
$$

So we would have to choose h_{0} to satisfy $g^{\prime}\left(a_{g}\right) h_{0}^{\prime}\left(a_{f}\right)=f^{\prime}\left(a_{f}\right) h_{0}^{\prime}\left(b_{f}\right)$.

