Topological conjugacy_1

February 4, 2019

1 Topological Conjugacy for homeomorphisms of R.

Let f : I — I and g : ] — ] be continuous maps. We say they are topologically conjugate if there
is a homeomorphism / : [ — ] so that goh(x) = ho f(x) forall x € I.

We will demonstrate the idea behind the following result:

Theorem. Suppose I = (a,b) and | = (c,d) are intervals in R. Suppose f : I - Tand g: ] — |
are orientation-preserving homeomorphisms so that * f(x) > x for each x € I, and * g(y) > y for
each y € . Then f and g are topologically conjugate.

To demonstrate this, we will consider two such maps.

In [1]: £(x) = sqrt(2*xx-x"2) # Consider over the interval (0,p7)
plot(f, 0, 1, aspect_ratio=1) + plot(x,(x, 0, 1), color="red")

Out[1]:
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[2]: # Here we work out the inverse map
x=var ("x")
y=var("y")
assume(y>0) # Used to help Sage find the solution we want below.
assume (y<1)
show ((f (x)==y) .solve(x))
== -sqrt(-y"2 + 1) + 1, x == sqrt(-y~2 + 1) + 1]

Note that the inverse must be the first one since the second takes values greater than one.

[3]:

# Here we define the inverse map
finv(y) = -sqrt(-y™2 + 1) + 1

Lets plot f ! with f to be sure.
[4]: plot(finv, O, 1, color='"green", aspect_ratio=1) + plot(f,(x,0,1), color="blue")

Out [4]:
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In [5]: g(x) = 1/2x(x*(3-x)) # Consider over the interval (0,pi)
plot(g, 0, 1, aspect_ratio=1) + plot(x,(x,0,1), color="red")

Out [5] :
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In [6]: # Here we work out the inverse map
x=var ("x")
y=var ( uyn )
assume(y>0) # Used to help Sage find the solution we want below.
assume (y<1)
(g(x)==y) .solve(x)
Out[6]: [x == -1/2xsqrt(-8xy + 9) + 3/2, x == 1/2*sqrt(-8*y + 9) + 3/2]
In [7]: ginv(y) = -1/2*sqrt(-8*y + 9) + 3/2
In [8]: plot(ginv, O, 1, color="green", aspect_ratio=1) + plot(g,(x,0,1), color="blue")
Out [8]:
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1.0.1 Defining the topological conjugacy:
First we pick a points a¢ and a¢ in the domains of f and g:

In [9]: a_f = 1/2
a_g=1/2

We define by = f(ayr) and by = g(ay):

In [10]: b_f = f(a_f)
print("b_f = %s"%b_£)
b_g = gla_g)
print("b_g = %s"%b_g)

b_f
b_g

1/2xsqrt(3)
5/8

The intervals [af, bs) is a fundamental domains for f. This means for each x € (0,1), there is a

unique n € Z so that f"(x) € [af, by). Similarly, [ag, by) is a fundamental domain for g.
We define a homeomorphism hg : [af, bf) — [ag, bg).

In [11]: h_O0(x) = (b_g - a_g)/(b_f - a_f)*(x - a_f) + a_g
show(h_0(x))
assert h_O(a_f)==a_g # Prints errors if false.
assert h_0(b_f)==b_g



1/8%(2%x - 1)/(sqrt(3) - 1) + 1/2

Note that this function is more complex, so we define it using a Python type function. This
allows us to use any Python or Sage type expression we want, including if statements and loops.

In [12]: def h(x):
assert 0 < x < 1 # Cause an error if not in the domain of f.
if a_f <= x < b_f:

# Use h_O:
return h_0(x)
if x >= b_f:
count = 0
while x >= b_f: # Apply f ™1 until we land in the fundamental
x = finv(x) # domain and count the number of times

count = count + 1 # we apply f —1.
assert a_f <= x < b_f
y = h_0(x) # Move to the domain of g using h_O.
for i in range(count): # Now apply g to y, the same number of times.

y =gy
return y
if x < a_f:
count = O
while x < a_f:
x = f(x)

count = count + 1
assert a_f <= x < b_£f
y = h_0(x)
for i in range(count):

y = ginv(y)
return y

In [13]: # Plot h.
# Note that h is not defined at zero or at omne, so
# we have shrunk the interval we are plotting slightly.
# Calling plot(h, 0, 1) will give rise to errors.
plot(h, 0.001, 0.999)

Out[13]:
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In [14]: # Check one value larger than b_f:
show( h(9/10) )
# Check the conjugacy equation:
assert( h(£(9/10)) == g((9/10)) )

-1/3200%((sqrt(19) - 5)/(sqrt(3) - 1) + 100)*((sqrt(19) - 5)/(sqrt(3) - 1) - 20)

In [15]: # Check one wvalue larger than b_f:
show( h(1/4) )
# Check the conjugacy equation:
assert( h(£(1/4)) == gh(1/4)) )

-1/2*sqrt (-1/2*(sqrt(7) - 2)/(sqrt(3) - 1) + 5) + 3/2

We can graphically check the conjugacy. For plotl we will plot / o f and for plot2 we will plot
goh.

In [16]: plotl = plot(lambda x: h(f(x)), 0.001, 0.999)
show(plotl)
plot2 = plot(lambda x: g(h(x)), 0.001, 0.999, color="red")
show(plot2)
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In [17]: # Plot them on top of each other
plotl + plot2

Out [17]:
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In [18]: # Note that h is continuous but not differentiable:
def approximate_derivative_of_h(x, epsilon=0.0001):
return (h(x+epsilon)-h(x)) / epsilon

In [19]: plot(approximate_derivative_of_h,0.1,0.9)

Out [19]:
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By fiddling appropriately with our function /ip(x) we could get  to be smooth. The main issue
is derivatives at as. At other points, & is defined to be hy or compositions of hy with powers of f
and g. Note that for values slightly bigger than ay, h is given by hy. While for values slightly to
the left of ay, h is given by gfl o hg o f. Thus if we want the derivative to match at a r, we would
have to have

Ho(ap) = (57 (1 o)) (ap) - o) = (&™) o0 (o) = LSy,

So we would have to choose hy to satisfy g'(ag)hy(as) = f'(as)hy(bys).

10



	Topological Conjugacy for homeomorphisms of \mathbb R.
	Defining the topological conjugacy:


