
Topological_conjugacy_1

February 4, 2019

1 Topological Conjugacy for homeomorphisms of R.

Let f : I → I and g : J → J be continuous maps. We say they are topologically conjugate if there
is a homeomorphism h : I → J so that g ◦ h(x) = h ◦ f (x) for all x ∈ I.

We will demonstrate the idea behind the following result:
Theorem. Suppose I = (a, b) and J = (c, d) are intervals in R. Suppose f : I → I and g : J → J

are orientation-preserving homeomorphisms so that * f (x) > x for each x ∈ I, and * g(y) > y for
each y ∈ J. Then f and g are topologically conjugate.

To demonstrate this, we will consider two such maps.

In [1]: f(x) = sqrt(2*x-x^2) # Consider over the interval (0,pi)
plot(f, 0, 1, aspect_ratio=1) + plot(x,(x, 0, 1), color="red")

Out[1]:

1

In [2]: # Here we work out the inverse map
x=var("x")
y=var("y")
assume(y>0) # Used to help Sage find the solution we want below.
assume(y<1)
show((f(x)==y).solve(x))

[x == -sqrt(-y^2 + 1) + 1, x == sqrt(-y^2 + 1) + 1]

Note that the inverse must be the first one since the second takes values greater than one.

In [3]: # Here we define the inverse map
finv(y) = -sqrt(-y^2 + 1) + 1

Lets plot f−1 with f to be sure.

In [4]: plot(finv, 0, 1, color="green", aspect_ratio=1) + plot(f,(x,0,1), color="blue")

Out[4]:

2

In [5]: g(x) = 1/2*(x*(3-x)) # Consider over the interval (0,pi)

plot(g, 0, 1, aspect_ratio=1) + plot(x,(x,0,1), color="red")

Out[5]:

3

In [6]: # Here we work out the inverse map
x=var("x")
y=var("y")
assume(y>0) # Used to help Sage find the solution we want below.
assume(y<1)
(g(x)==y).solve(x)

Out[6]: [x == -1/2*sqrt(-8*y + 9) + 3/2, x == 1/2*sqrt(-8*y + 9) + 3/2]

In [7]: ginv(y) = -1/2*sqrt(-8*y + 9) + 3/2

In [8]: plot(ginv, 0, 1, color="green", aspect_ratio=1) + plot(g,(x,0,1), color="blue")

Out[8]:

4

1.0.1 Defining the topological conjugacy:

First we pick a points a f and ag in the domains of f and g:

In [9]: a_f = 1/2
a_g = 1/2

We define b f = f (a f) and bg = g(ag):

In [10]: b_f = f(a_f)
print("b_f = %s"%b_f)
b_g = g(a_g)
print("b_g = %s"%b_g)

b_f = 1/2*sqrt(3)
b_g = 5/8

The intervals [a f , b f) is a fundamental domains for f . This means for each x ∈ (0, 1), there is a
unique n ∈ Z so that f n(x) ∈ [a f , b f). Similarly, [ag, bg) is a fundamental domain for g.

We define a homeomorphism h0 : [a f , b f) → [ag, bg).

In [11]: h_0(x) = (b_g - a_g)/(b_f - a_f)*(x - a_f) + a_g
show(h_0(x))
assert h_0(a_f)==a_g # Prints errors if false.
assert h_0(b_f)==b_g

5

1/8*(2*x - 1)/(sqrt(3) - 1) + 1/2

Note that this function is more complex, so we define it using a Python type function. This
allows us to use any Python or Sage type expression we want, including if statements and loops.

In [12]: def h(x):
assert 0 < x < 1 # Cause an error if not in the domain of f.
if a_f <= x < b_f:

Use h_0:
return h_0(x)

if x >= b_f:
count = 0
while x >= b_f: # Apply f^-1 until we land in the fundamental

x = finv(x) # domain and count the number of times
count = count + 1 # we apply f^-1.

assert a_f <= x < b_f
y = h_0(x) # Move to the domain of g using h_0.
for i in range(count): # Now apply g to y, the same number of times.

y = g(y)
return y

if x < a_f:
count = 0
while x < a_f:

x = f(x)
count = count + 1

assert a_f <= x < b_f
y = h_0(x)
for i in range(count):

y = ginv(y)
return y

In [13]: # Plot h.
Note that h is not defined at zero or at one, so
we have shrunk the interval we are plotting slightly.
Calling plot(h, 0, 1) will give rise to errors.
plot(h, 0.001, 0.999)

Out[13]:

6

In [14]: # Check one value larger than b_f:
show(h(9/10))
Check the conjugacy equation:
assert(h(f(9/10)) == g(h(9/10)))

-1/3200*((sqrt(19) - 5)/(sqrt(3) - 1) + 100)*((sqrt(19) - 5)/(sqrt(3) - 1) - 20)

In [15]: # Check one value larger than b_f:
show(h(1/4))
Check the conjugacy equation:
assert(h(f(1/4)) == g(h(1/4)))

-1/2*sqrt(-1/2*(sqrt(7) - 2)/(sqrt(3) - 1) + 5) + 3/2

We can graphically check the conjugacy. For plot1 we will plot h ◦ f and for plot2 we will plot
g ◦ h.

In [16]: plot1 = plot(lambda x: h(f(x)), 0.001, 0.999)
show(plot1)
plot2 = plot(lambda x: g(h(x)), 0.001, 0.999, color="red")
show(plot2)

7

8

In [17]: # Plot them on top of each other
plot1 + plot2

Out[17]:

In [18]: # Note that h is continuous but not differentiable:
def approximate_derivative_of_h(x, epsilon=0.0001):

return (h(x+epsilon)-h(x)) / epsilon

In [19]: plot(approximate_derivative_of_h,0.1,0.9)

Out[19]:

9

By fiddling appropriately with our function h0(x) we could get h to be smooth. The main issue
is derivatives at a f . At other points, h is defined to be h0 or compositions of h0 with powers of f
and g. Note that for values slightly bigger than a f , h is given by h0. While for values slightly to
the left of a f , h is given by g−1 ◦ h0 ◦ f . Thus if we want the derivative to match at a f , we would
have to have

h′0(a f) = (g−1)′
(
h ◦ f (a f)

)
· h′0

(
f (a f)

)
· f ′(a f) = (g−1)′(bg)h′0(b f) f ′(a f) =

f ′(a f)

g′(ag)
h′0(b f).

So we would have to choose h0 to satisfy g′(ag)h′0(a f) = f ′(a f)h′0(b f).

10

	Topological Conjugacy for homeomorphisms of \mathbb R.
	Defining the topological conjugacy:

