
The Logistic Family

We had a worksheet in class that did several things:

Explained the dynamics of quadratic maps with zero or one fixed point.1. 
Proved that if a quadratic has two fixed points, it is conjugate via an affine linear map to a map of the
form

where . These maps form the Logistic family of maps.

2. 

(x) = μx(1 − x).Fμ
μ > 1

One trivial remark is that if , then every point in  is forward asymptotic to . This
is because  whenever  guaranteeing from prior arguments that points in 
tend to . Also if , then , so again  will be forward asymptotic to .

Because of this we will concentrate on understanding the dynamics on the interval .

μ > 1 (−∞, 0) ∪ (1,∞) −∞
(x) < xFμ x ∈ (−∞, 0) (−∞, 0)

−∞ x > 1 (x) < 0Fμ x −∞

[0, 1]

The goal of this notebook is to take a tour through the Logistic family as  increases from the value one.
Below we define the logistic family:

μ
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For example F(3/2) can be plotted as follows:
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The value  represents . Observe also that zero is fixed. Since , this point represents a repelling
fixed point.

μ (0)F ′ μ > 0

Out[2]:

def F(mu):
def F_mu(x):

return mu*x*(1-x)
return F_mu

G = F(3/2)
plot(G, 0, 1, aspect_ratio = 1)



The other fixed point is at the point

We define this point as a function of mu:

= .pμ
μ − 1
μ
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We can check symbolically that  is indeed fixed by :pμ Fμ
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More on symbolic expressions can be found here: http://doc.sagemath.org/html/en/reference/calculus
/sage/symbolic/expression.html (http://doc.sagemath.org/html/en/reference/calculus/sage/symbolic
/expression.html)

Now we consider the multiplier of the fixed point . This is just the value . Here we have Sage
compute :

pμ ( )F ′μ pμ
F ′μ
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Below we demonstrate that

Note that F_prime  is an algebraic expression in the variables x and mu . We can substitute a value for
x  using the subs()  method which takes as input a mapping. We will map x  to p(mu) . The
.simplify_full()  method attempts to simplify the resulting expression.

( ) = 2 − μ.F ′μ pμ
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Out[4]: True

Out[5]: -mu*(x - 1) - mu*x

Out[6]: -mu + 2

def p(mu):
return (mu-1)/mu

mu = var("mu") # make mu into a symbolic variable
bool(F(mu)(p(mu)) == p(mu)) # Attempt to evaluate the equation as true or false.

x = var("x")
F_prime = F(mu)(x).derivative(x)
F_prime

F_prime.subs({x:p(mu)}).simplify_full()



Observe that:

We have  when . This means that  is an attracting fixed point, and that 
is a one-to-one orientation preserving map in a sufficiently small open neighborhood of . (An {\em
open neighborhood of  is an open set containing  such as the interval  for 
small.)

1. 

In the case , we have . This means that  since  is the only critical point.

Since ,  is a {\em super-attracting fixed point}. Furthemore, because  coincides with the
critical point, the map  is never one-to-one on a neighborhood of .

2. 

We have  when . This means that  is an attracting fixed point, that  is
a one-to-one orientation-reversing map in a small neighborhood of .

3. 

When , we have that . At this point  has become a repelling fixed point.4. 

It follows from the above facts that two maps taken from different cases above are not topologically
conjugate. For example, a map from case 1 is not conjugate to a map from case 3, because in case 1, the
attracting fixed point  is locally orientation preserving, whiel in case 3 the attracting fixed point is locally
orienation reversing.

In fact it can be shown that two maps taken from case 1 are topologically conjugate, and two maps taken
from case 3 are topologically conjugate. The topological conjugacy can not be a diffeomorphism because
conjugacy by a diffeomorphism preserves multipliers at fixed and periodic points. (Excercise: Show this is
true.)

Now we will attempt to understand the dynamics of these maps for values of  running from  to a little
bigger than .

0 < ( ) < 1F ′μ pμ μ ∈ (1, 2) pμ F ′μ
pμ

pμ pμ ( − ϵ, + ϵ)pμ pμ ϵ > 0

μ = 2 ( ) = 0F ′μ pμ =pμ 1
2

1
2

( ) = 0F ′μ pμ pμ pμ
Fμ pμ

−1 < ( ) < 0F ′μ pμ μ ∈ (2, 3) pμ F ′μ
pμ

μ > 3 ( ) < −1F ′μ pμ pμ

pμ

μ 1
3

The case when .μ ∈ (1, 2)

This cobweb function was taken from an earlier notebook:
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Here is an example of a cobweb plot in the case  starting at , plotting 10 iterations over the

interval .

μ = 3
2 x = 0.1

(0, 1)

def cobweb(x, T, N, xmin, xmax):
cobweb_path = [(x,x)]
for i in range(N):

y = T(x) # Reassign y to be T(x).
cobweb_path.append( (x,y) )
cobweb_path.append( (y,y) )
x = y # Reassign x to be identical to y.

cobweb_plot = line2d(cobweb_path, color="red", aspect_ratio=1)

function_graph = plot(T, (xmin, xmax), color="blue")

# define the identity map:
identity(t) = t
id_graph = plot(identity, (xmin, xmax), color="green")

return cobweb_plot + function_graph + id_graph
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We will use sliders to allow experimentation. A slider can be created decribing values in the interval 
with a step size of  and initial value  as below:

[1, 2]
0.001 3/2

In [9]:

We want to be able to vary  and vary . We can use the @interact  decorator for a
function to do this. The values of the sliders will be used as input to a function which is run whenever the
sliders are updated.

μ ∈ (1, 2) x ∈ (0, 1)

Out[8]:

1.50

cobweb(0.1, F(3/2), 10, 0, 1)

slider(1, 2, 0.001, 3/2)
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From looking at the Cobweb plot, you should be convinced that:

Any point  has an orbit which increases and accumulates on . To prove this, it suffices to
show that  implies  and apply our standard argument.

1. 

Any point  has an orbit which decreases down toward . Again it suffices to show that if

, then .

2. 

If , then . From this and statements 1 and 2 above, it follows that  is forward

asymptotic to .

3. 

The above shows that , which completely describes the dynamics on . Every point in
 is forward asymptotic to . (Also, zero is fixed and .)

x ∈ (0, )pμ pμ
x ∈ (0, )pμ x < (x) <Fμ pμ
x ∈ ( , ]pμ

1
2 pμ

x ∈ ( , ]pμ
1
2 < (x) < xpμ Fμ

x ∈ ( , 1)1
2 0 < (x) <Fμ

1
2 x

pμ

( ) = (0, 1)Ws pμ [0, 1]
(0, 1) pμ (1) = 0Fμ

The case .μ = 2

Recall that  has a super-attracting fixed point. The point  is both a critical point and fixed. The
following code lets you experiment with this case.

F2 =pμ 1
2

mu 1.50

x 0.50

@interact
def iteractive_plot(mu = slider(1, 2, 0.001, 3/2),

x = slider(0, 1, 0.001, 1/2)):
return cobweb(x, F(mu), 10, 0, 1)
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Similar analysis to the previous case can be used to prove that every point in  is forward asymptotic to
the super-attracting fixed point .

(0, 1)
=pμ 1
2

The case of .μ ∈ (2, 3)

You can experiment with the maps below:

x 0.25

@interact
def iteractive_plot(x = slider(0, 1, 0.001, 1/4)):

return cobweb(x, F(2), 10, 0, 1)
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The dynamics are a bit more complex because locally  is orientatation-reversing in a neighborhood of .
This causes orbits to spiral inward rather than approach directly.

Fμ pμ

By experimenting with the cobweb plots above, you should be convinced that all orbits are asymptotic to the
fixed point .

Theorem. When , all orbits in  are asymptotic to .

We will give a proof of this using the following claim about the interval .

Claim. Suppose .

The interval is symmetric around .1. 
We have . Note that  is the maximum value taken by .2. 

We have  for each .3. 

Proof of 1. It is symmetric around  because the endpoints are at equal distance from . Observe

Graphical "proof" of 2. We can consider plotting the left and right endpoints of  as well as . We plot

the left endpoint in green, the right endpoint in blue, and the  in red below. All are expressed as a

function of .

pμ

2 < μ < 3 (0, 1) pμ

I = [ , 2 − ]1
2 pμ

1
2

2 < μ < 3

pμ
( ) ∈ IFμ
1
2 ( )Fμ

1
2 Fμ

−1 < ( (x) < 1F2μ )′ x ∈ I

pμ pμ

| − | = − = | − (2 − )|.pμ
1
2 pμ

1
2 pμ pμ

1
2

I ( )Fμ
1
2

( )Fμ
1
2

μ

mu 2.50

x 0.90

@interact
def iteractive_plot(mu = slider(2, 3, 0.001, 2.5),

x = slider(0, 1, 0.001, 0.9)):
return cobweb(x, F(mu), 20, 0, 1)
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Graphical "proof" of 3. We plot  as a function of  below, allowing the choice of  with a slider. We
also add plots of the constant function  and the constant function .

( (x)F2μ )′ x μ

−1 1
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plt = plot(1/2, 2, 3, color="green")
plt += plot(2*p(mu)-1/2, 2, 3, color="blue")
plt += plot(F(mu)(1/2), 2, 3, color="red")
plt
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□

Proposition. If , then the orbit of  is forward asymptotic to .

Proof: We use the Claim. Since  is a continuous function of , it attains a maximum on . Call this
value . By statement 3 of the claim, we know . Then by the Mean Value Theorem, we see that for
any , we have

Since  is closer to  than  and  is symmetric around , it must be that . Then by
induction we see that for any  and any , we have

Since , the right hand side tends to zero as . Thus, we have that .
This shows that the orbit of  is forward asymptotic to . as desired.

x ∈ I x pμ

|( (t)|F2μ )′ t I

C C < 1
x ∈ I

| (x) − | < C|x − |.F2μ pμ pμ
(x)F2μ pμ x I pμ (x) ∈ IF2μ

x ∈ I k > 0
| (x) − | < |x − |.F2kμ pμ Ck pμ

C < 1 k → +∞ (x) =limk→+∞ F2kμ pμ
x pμ

mu 2.50

@interact
def iteractive_plot(mu = slider(2, 3, 0.001, 2.5)):

x = var("x")
F_mu = F(mu)
square = F_mu(F_mu(x))
plt = plot(square.derivative(x), 1/2, 2*p(mu)-1/2, color="blue")
plt += plot(-1, 1/2, 2*p(mu)-1/2, color="red")
plt += plot(1, 1/2, 2*p(mu)-1/2, color="red")
return plt



□

Proof of the Theorem. Now we will show that all points are forward asymptotic to .

From the proposition above, we already know that the statement is true on the interval .

Now consider the case of . Observe that if , then . Since there are no fixed

points in the interval , points in the orbit increase until at some point we reach a . Since

 is in the image of , it is less than or equal to the maximum  taken. Thus from statement (2) of

the claim we know that . But then it follows from the Proposition above that  is forward
asymptotic to . But, then  must be forward asymptotic to  as well.

We already know  is forward asymptotic to  since . Now consider the . Let ,

which is less than . Then we know from the previous paragraph that  is forward asymptotic to . But we

also have that  and thus  for all . Thus  must also be forward
asymptotic to .

pμ

I = [ , 2 − ]1
2 pμ

1
2

x ∈ (0, )12 x ∈ (0, )12 (x) > xFμ

(0, )12 (x) ≥Fnμ
1
2

(x)Fnμ Fμ ( )Fμ
1
2

(x) ∈ IFnμ (x)Fnμ
pμ x pμ

1
2 pμ ∈ I1

2 x > 1
2 y = 1 − x

1
2 y pμ

(x) = (y)Fμ Fμ (x) = (y)Fnμ Fnμ n ≥ 1 x

pμ
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Passing through .μ = 3
At the value of , the point  is slowly attracting.3 pμ

mu 2.50

x 0.90

@interact
def iteractive_plot(mu = slider(2, 3, 0.001, 2.5),

x = slider(0, 1, 0.001, 0.9)):
plt = cobweb(x, F(mu), 20, 0, 1)
plt += line2d([(1/2,1/2),(2*p(mu)-1/2,2*p(mu)-1/2)],thickness=2,color="purple"
return plt
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Aside from looking at the cobweb plot above, a good way to convince yourself of this is to look at the square.
Here we define the square :(x)F2μ
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x 0.90

@interact
def iteractive_plot(x = slider(0, 1, 0.001, 0.9)):

return cobweb(x, F(3), 200, 0, 1)

def F2(mu):
F_mu = F(mu)
def F2_mu(x):

return F_mu(F_mu(x))
return F2_mu
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The following lets you see what happens when you vary  through the value of . We plot on a small interval
containing .

μ 3
pμ

x 0.90

@interact
def iteractive_plot(x = slider(0, 1, 0.001, 0.9)):

return cobweb(x, F2(3), 200, 0, 1)
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It is easier to see what is going on by plotting .F2μ

mu 2.95

x 0.73

@interact
def iteractive_plot(mu = slider(2.9, 3.2, 0.001, 2.95),

x = slider(0.5, 0.8, 0.001, 0.73)):
return cobweb(x, F(mu), 200, 0.5, 0.8)
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The family of maps  undergoes a period-doubling bifurcation at the value . At values of  slightly
greater than , the fixed point  has switched to being a repelling fixed point, and a new attracting period
two orbit emerges.

Fμ c = 3 c

3 pμ

mu 2.95

x 0.73

@interact
def iteractive_plot(mu = slider(2.9, 3.2, 0.001, 2.95),

x = slider(0.5, 0.8, 0.001, 0.73)):
return cobweb(x, F2(mu), 100, 0.5, 0.8)


