Bifurcations in homeomorphisms of R

February 7, 2019

1 Bifurcations in homeomorphisms of \mathbb{R}.

We will consider the family of maps

$$
f_{c}(x)=\frac{1}{2}\left(e^{x}+x-c\right) .
$$

We can see this is a homeomorphism of \mathbb{R} because the derivative is everywhere in the interval $\left[\frac{1}{2},+\infty\right)$. Another nice property of the map is that $f_{c}^{\prime}(0)=1$ for all c. Also f^{\prime} is increasing so that this is the only point where f_{c}^{\prime} is zero.

```
In [1]: # This function returns the map f_c.
    def f(c):
        m(x)}=1/2*(\mp@subsup{e}{}{\wedge}x+x-c
        return m
In [2]: f_1 = f(1)
    x = var("x")
    f_1(x)
Out[2]: 1/2*x + 1/2*e^x - 1/2
In [3]: # The identity map
    identity(x) = x
```

A bifurcation occurs at the value $c=1$. Here we plot some nearby values
In [4]: \# Plot of $f_{-} 0.9$
plot(f(0.9),-1,1, aspect_ratio=1)+plot(identity, color="red")
Out [4]:

In [5]: \# Plot of $f_{-} 1$ plot(f(1),-1,1,aspect_ratio=1)+plot(identity, color="red") Out [5] :

In [6]: \# Plot of f_1.1 plot(f(1.1),-1,1, aspect_ratio=1)+plot(identity, color="red") Out [6] :

A bifurcation is a sudden change in the dynamics as we change the parameters of a family of dynamical systems. In this case, a bifurcation occurs at the value $c=1$: ${ }^{*}$ For values of $c<1$: For every $x \in \mathbb{R}, \lim _{n \rightarrow+\infty} f_{c}^{n}(x)=+\infty$. That is, $W^{s}(+\infty)=\mathbb{R}$. ${ }^{*}$ At the value $c=1$: The map f_{1} has a single fixed point, $f_{1}(0)=0$. For values of $x<0$, we have $\lim _{n \rightarrow+\infty} f_{1}^{n}(x)=0$. For values of $x>0$, we have $\lim _{n \rightarrow+\infty} f_{1}^{n}(x)=+\infty$. That is,

$$
W^{s}(0)=(-\infty, 0] \quad \text { and } \quad W^{s}(+\infty)=(0,+\infty)
$$

* At values of $c>1$: The map f_{c} has two fixed points, denote them by a and b with $a<b$. The point a is an attracting fixed point while b is repelling. We have

$$
W^{s}(a)=(-\infty, b) \quad \text { and } \quad W^{s}(+\infty)=(b,+\infty)
$$

1.1 Visualizing the maps through a vector field.

We can visualize this bifurcation in the (x, c) plane, where dynamics in the horizontal line of height c represent the action of f_{c}. First, let us compute the fixed points.

Observe that the x value of a fixed point uniquely determines the c value:

```
In [7]: c=var("c")
    x=var("x")
    solve(f(c)(x)==x, c)
Out[7]: [c == -x + e^x]
In [8]: c_value_of_fixed_point(x) = e^x - x
```

In [9]: fixed_point_plot = plot(c_value_of_fixed_point, -2, 1.25, aspect_ratio=1) fixed_point_plot

Out [9] :

Since c is a parameter, it is constant under iteration. We define the map

$$
F(x, c)=\left(f_{c}(x), c\right)
$$

In [10]: $F(x, c)=(f(c)(x), c)$

$$
F(x, c)
$$

Out [10]: $\left(-1 / 2 * c+1 / 2 * x+1 / 2 * e^{\wedge} \mathrm{x}, \mathrm{c}\right)$
We can visualize F as a vector field. At each point (x, c), we join (x, c) to its image $F(x, c)$ by a displacement vector with value $F(x, c)-(x, c)$. We just compute this to be:

In [11]: $\mathrm{V}(\mathrm{x}, \mathrm{c})=\left(-1 / 2 * \mathrm{c}+1 / 2 * \mathrm{x}+1 / 2 * \mathrm{e}^{\wedge} \mathrm{x}-\mathrm{x}, 0\right)$
In [12]: fixed_point_plot + plot_vector_field(V(x,c), (x,-2,1.25), (c,0,2.2)) Out [12]:

