Math 323: Advanced Calculus I: Third Midterm Solutions

Thursday, April 6th, 2017

Prof. Hooper

1. (a) (8 points) Complete the following definition:

Let f be a real-valued function whose domain is a subset of \mathbb{R} . The function f is continuous at x_0 in dom(f) if . . .

Solution: for every sequence (x_n) in dom(f) converging to x_0 , we have $\lim_n f(x_n) = f(x_0)$.

(b) (8 points) Complete the ϵ - δ definition of continuity (which in our text appears as a Theorem):

Let f be a real-valued function whose domain is a subset of \mathbb{R} . Then f is *continuous* at x_0 in dom(f) if and only if . . .

Solution: for each $\epsilon > 0$ there exists $\delta > 0$ such that $x \in \text{dom}(f)$ and $|x - x_0| < \delta$ imply $|f(x)f(x_0)| < \epsilon$.

(c) (8 points) Complete the following definition:

Let f be a real-valued function defined on a set $S \subset \mathbb{R}$. Then f is uniformly continuous on S if . . .

Solution: for each $\epsilon > 0$ there exists $\delta > 0$ such that $x, y \in S$ and $|x - y| < \delta$ imply $|f(x) - f(y)| < \epsilon$.

(d) (8 points) State the Intermediate Value Theorem.

Solution: If f is a continuous real-valued function on an interval I, then f has the intermediate value property on I: Whenever $a, b \in I$, a < b and y lies between f(a) and f(b) [i.e., f(a) < y < f(b) or f(b) < y < f(a)], there exists at least one x in (a, b) such that f(x) = y.

2. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by the following rule

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ -x & \text{if } x \notin \mathbb{Q}. \end{cases}$$

For the following questions, you may use any definition of continuity that you wish.

(a) (12 points) Prove that f is continuous at zero.

Solution: We will use the ϵ - δ definition of continuity. Observe that f(0) = 0. Let $\epsilon > 0$ be arbitrary. We will show that $|x-0| < \epsilon$ implies $|f(x)-0| < \epsilon$. (That is, we can set $\delta = \epsilon$.) Suppose $|x| < \epsilon$. Then $f(x) = \pm x$ and so $|f(x)| = |x| < \epsilon$.

(b) (12 points) Prove that f is not continuous at one.

Solution: We will use the sequence definition of continuity. Suppose to the contrary that f is continuous at one. Then for any sequence (x_n) so that $\lim x_n = 1$ we have $\lim f(x_n) = f(1) = 1$. Recall that $\sqrt{2}$ is irrational. Define $x_n = 1 + \frac{\sqrt{2}}{n}$. Then and $\lim x_n = 1$. Since each $x_n \notin \mathbb{Q}$ we have

$$\lim f(x_n) = \lim -x_n = -\lim x_n = -1.$$

This is a contradiction since $\lim x_n = 1$ but $\lim f(x_n) \neq f(1)$.

- 3. State if the following statements are true or false. If true, briefly explain why. If false, give a counterexample.
 - (a) (6 points) A continuous real-valued function whose domain is a bounded interval is a bounded function.

Solution: False. The function $f:(0,1)\to\mathbb{R}$ defined by f(x)=1/x is not bounded.

(b) (6 points) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous then so is the function

$$h(x) = f(x)g(x) + f(g(x)).$$

Solution: True. Since f is continuous and g is continuous, so is $f \cdot g$ and $f \circ g$. Since these are both continuous so is their sum. These were theorems about continuity.

(c) (6 points) If the function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous on each interval of the form [n, n+1] with $n \in \mathbb{Z}$, then it is uniformly continuous on \mathbb{R} .

Solution: False. Recall that a continuous function on a closed and bounded function is always uniformly continuous. Also recall that $f(x) = x^2$ is not uniformly continuous. So, $f(x) = x^2$ is a counterexample.

(d) (6 points) If $\sum_{n=0}^{\infty} a_n$ converges then so does $\sum_{n=0}^{\infty} |a_n|$.

Solution: False. The series $\sum \frac{(-1)^n}{n}$ converges because it is alternating, but $\sum \frac{1}{n}$ diverges by the integral test.

(e) (6 points) A uniformly continuous function $f : \mathbb{R} \to \mathbb{R}$ attains its maximum. (The book says "assumes its maximum" for the same notion.)

Solution: False. The function f(x) = x is uniformly continuous but does not attain a maximum. (Recall that f attains its maximum if there is an x_0 in the domain so that $f(x_0) \ge f(x)$ for every point x in the domain.)

4. (14 points) Suppose that $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to R$ are continuous functions. Prove that the composition $g \circ f$ is continuous.

(*Remark:* I am asking you to prove a basic result about continuity, so you should only one use the definitions of continuity to prove this. Either definition is fine.)

Solution:

 ϵ - δ **proof.** Let $x_0 \in \mathbb{R}$. We will show that $g \circ f$ is continuous at x_0 . Let $\epsilon > 0$. We must show that there is a $\delta > 0$ so that $|x - x_0| < \delta$ implies $|g \circ f(x) - g \circ f(x_0)| < \epsilon$.

- (1) Since g is continuous, there is a $\delta_g > 0$ so that $|y f(x_0)| < \delta_g$ implies $|g(y) g \circ f(x_0)| < \epsilon$.
- (2) Since f is continuous, there is a $\delta > 0$ so that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \delta_g$.

Now suppose $x \in \mathbb{R}$ and $|x - x_0| < \delta$. Then by (2) we know $|f(x) - f(x_0)| < \delta_g$. By (1) with y = f(x) we see $|g \circ f(x) - g \circ f(x_0)| < \epsilon$.

Sequence proof. Let $x_0 \in \mathbb{R}$. We will show that $g \circ f$ is continuous at x_0 . Let x_n be any sequence in \mathbb{R} so that $\lim x_n = x_0$. We must show that $\lim g \circ f(x) = g \circ f(x_0)$. Since f is continuous an $\lim x_n = x_0$ we know that $\lim f(x_n) = f(x_0)$. Since g is continuous and $\lim f(x_n) = f(x_0)$ we know that $\lim g(f(x_n)) = g(f(x_0))$.