Math 346: Linear Algebra: Take Home Quiz 6

Solutions:

1. Let $V \subset \mathbb{R}^{3}$ denote the subspace of vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ so that $x-y+z=0$.
(a) (3 points) Find bases for both V and its orthogonal complement V^{\perp}.

Solution: Let $\mathbf{n}=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right)$. Then V is the null space of \mathbf{n}^{T} (i.e., $V=$ $\left.N\left(\mathbf{n}^{T}\right)\right)$. Then by the Fundamental Theorem of Linear Algebra II, $V^{\perp}=C(\mathbf{n})=$ $\operatorname{span}\{\mathbf{n}\}$. Thus $\{\mathbf{n}\}$ is a basis for V^{\perp}.
To find a basis for V we apply our algorithm to find a basis for a null space. The matrix \mathbf{n}^{T} is already in reduced echelon form and corresponds to the equation $x-y+z=0$. We have $x=y-z$ and y and z are free variables. Thus a basis for V is given by

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)\right\} .
$$

(b) (4 points) Compute 3×3 matrices M and N so that for any $\mathrm{x} \in \mathbb{R}^{3}, M \mathrm{x}$ is the projection of \mathbf{x} to V and $N \mathbf{x}$ is the projection of \mathbf{x} to V^{\perp}.

Solution: Since $\{\mathbf{n}\}$ is a basis for V^{\perp}, the projection matrix is given by

$$
N=\frac{1}{\|\mathbf{n}\|^{2}} \mathbf{n n}^{T}=\frac{1}{3}\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right) .
$$

To find the projection matrix M to V, define A to be the matrix where the basis vectors for V are the columns:

$$
A=\left(\begin{array}{rr}
1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then from the general formula for the projection matrix, $M=A\left(A^{T} A\right)^{-1} A^{T}$. By a computation we see that

$$
M=\frac{1}{3}\left(\begin{array}{rrr}
2 & 1 & -1 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

(c) (3 points) Show that for any $\mathbf{x} \in \mathbb{R}^{3}, \mathbf{x}=M \mathbf{x}+N \mathbf{x}$.

Solution: Observe by a simple calculation that $M+N=I$. Then for any $\mathrm{x} \in \mathbb{R}^{3}$ we have

$$
M \mathbf{x}+N \mathbf{x}=(M+N) \mathbf{x}=I \mathbf{x}=\mathbf{x}
$$

2. (10 points) Now let $V \subset \mathbb{R}^{n}$ be a subspace and M be the $n \times n$ matrix so that for any $\mathrm{x} \in \mathbb{R}^{n}, M \mathrm{x}$ is the projection of x to V. Prove that $I-M$ is the matrix defining the projection of \mathbf{x} onto V^{\perp}. (Use what you know about projections and the definition of orthogonal complement.)

Solution: We discussed in class that the projection of \mathbf{x} to V is the unique vector $\hat{\mathbf{x}} \in V$ so that $x-\hat{\mathbf{x}}$ is perpendicular to (every vector in) V.

Let $\mathbf{x} \in \mathbb{R}^{n}$ be arbitrary and $\hat{x}=M x$ be the projection of \mathbf{x} to V. From the fact above $\mathbf{x}-\hat{\mathbf{x}}$ is perpendicular to every vector in V. Thus $\mathbf{x}-\hat{\mathbf{x}} \in V^{\perp}$. We claim that $\mathbf{x}-\hat{\mathbf{x}}$ is the projection of \mathbf{x} to V^{\perp}. To prove this we use the fact above again. From the fact (with V replaced by V^{\perp}) we know that $\mathbf{y} \in V^{\perp}$ is the projection of \mathbf{x} to V^{\perp} if and only if $\mathbf{x}-\mathbf{y}$ is perpendicular to every vector in V^{\perp}. Now observe that in the case of $\mathbf{y}=\mathbf{x}-\hat{\mathbf{x}}$ we have $\mathbf{x}-\mathbf{y}=\hat{\mathbf{x}}$ and $\hat{\mathbf{x}} \in V$ so by definition of V^{\perp} we know that every vector in V^{\perp} is perpendicular to $\hat{\mathbf{x}}$. Thus we have shown $\mathbf{y}=\mathbf{x}-\hat{\mathbf{x}}$ is the projection of \mathbf{x} to V^{\perp}.
It remains to deal with the matrices. We have $\hat{x}=M x$ so for any \mathbf{x} as above we have

$$
\mathbf{y}=\mathbf{x}-\hat{x}=\mathbf{x}-M \mathbf{x}=I \mathbf{x}-M \mathbf{x}=(I-M) \mathbf{x}
$$

Thus the projection matrix to V^{\perp} is $I-M$.

