
Math 346: Practice for Midterm 2
Prof. Hooper

Disclaimer. This test is just a recommendation of things to study and problems to work on. You
may be asked about things that do not appear here. You should practice doing problems from the
book in addition to the problems included in this sheet.

Covered Material. Material explicitly covered will include §3.1-3.5 and §4.1. Knowledge of earlier
material will also be necessary to do well on the test, but earlier material will not be explicitly
tested. You are expected to know all material covered in the course up until now.

Basic concepts. You should understand and be able to work with basic terms used in the study
of Linear Algebra. You should also be able to define most of these terms which are discussed by
the book and also were discussed in class.

vector space (p. 123), subspace (p. 125), column space (p. 127), span (p. 128 & 167), nullspace (p.
135), special solution (p. 135), reduced row echelon form (p. 137), rank (p. 139), complete solution
(p. 153), linearly independent (p. 165), row space (p. 168), basis (p. 168), standard basis (p. 169),
dimension of a space (p. 171), left null space (p. 181), Fundamental Theorem of Linear Algebra,

Part 1 (p. 185) orthogonal subspaces (p. 195) orthogonal complement (p. 195) Fundamental
Theorem of Linear Algebra, Part 1 (p. 198)

Techniques. You should be able to:

• Prove that a subset of a vector space is a subspace.

• Reduce a matrix to reduced row echelon form.

• Find complete solutions to Ax = 0 and Ax = b and make use of the relationships between
these equations.

• Find the rank of a matrix. Understand how it relates to the dimensions of the four funda-
mental subspaces: the column space, null space, row space, and left null space of a matrix.

• Find bases for the four fundamental subspaces. Find bases for subspaces given in other ways
(such as by a span or zero sets to linear equations).

• Demonstrate that two subspaces are orthogonal. Compute the orthogonal complement of a
subspace.

Problems. I am presenting the following problems because they would be good practice. In
particular, they do not necessarily represent problems that I would give on a test, and they do not
cover all possible problems I would ask on a test. You should also make sure you know how to do
all homework problems that were assigned!

1. Suppose V is a vector space.

(a) Complete the following definition:
A set vectors {v1,v2, . . . ,vp} in a vector space V is called linearly independent if . . .



Solution: the only list of scalars satisfying

c1v1 + . . . + cpvp = 0

are given by c1 = c2 = . . . = cp = 0.

(b) Suppose the list of three vectors v1,v2,v3 is linearly independent. Prove that the system
of two vectors v1,v2 is linearly independent.

Solution: Assume that {v1,v2,v3} is linearly independent. Then the only solution
to

c1v1 + c2v2 + c3v3 = 0 (1)

is when c1 = c2 = c3 = 0. Now we will prove that {v1,v2} is linearly independent.
Suppose d1 and d2 are scalars satisfying

d1v1 + d2v2 = 0.

We must prove that d1 = d2 = 0. Observe that with d1 and d2 as above, we have

d1v1 + d2v2 + 0v3 = 0.

Then since the only solution to equation (1) is c1 = c2 = c3 = 0 we must have d1 = 0
and d2 = 0. This proves that {v1,v2} is linearly independent.

2. Let V be a vector space.

(a) Complete the following definition:
A set of vectors {v1,v2, . . . ,vp} in V spans V if . . .

Solution: for every w ∈ V there are scalars c1, . . . , cp ∈ R so that

w = c1v1 + . . . + cpvp.

(b) Suppose that the set of two vectors {v1,v2} ⊂ V is linear independent but does not span
V . Fill in the blanks to complete the proof that you can find another vector v3 ∈ V so
that v1,v2,v3 is linearly independent.

Let V be a vector space and v1,v2 be a system which is linear inde-
pendent but does not span V . Since v1,v2 does not generate, there is
a vector v3 such that

We claim that v1,v2,v3 is linearly independent. Suppose to the con-
trary that this system v1,v2,v3 is linear dependent. Then, there would
be scalars c1, c, c3 ∈ R which are not all zero and satisfy
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We will prove that this causes a contradiction. First if c3 = 0, then
we have a contradiction because

Second if c3 6= 0, then we have a contradiction because

Since one of these two possibilities must occur, it can not be that the
system v1,v2,v3 is linearly dependent. Therefore, we have shown that
this system is linearly independent.

Solution: Let V be a vector space and v1,v2 be a system which is linear independent
but does not span V . Since v1,v2 does not span, there is a vector v3 such that

v3 6= c1v1 + c2v2 for any c1, c2 ∈ R.

We claim that v1,v2,v3 is linearly independent. Suppose to the contrary that this
system v1,v2,v3 is linear dependent. Then, there would be scalars c1, c2, c3 ∈ R which
are not all zero and satisfy

c1v1 + c2v2 + c3v3 = 0.

We will prove that this causes a contradiction. First if c3 = 0, then we have a
contradiction because
then c1v1 + c2v2 = 0 with c1 6= 0 or c2 6= 0 which is impossible since {v1,v2}
is linearly independent. Second if c3 6= 0, then we have a contradiction because
we can solve for v3 and see

v3 = −c1
c3
v1 −

c2
c3
v2,

which shows that v3 was in fact in the span of {v1,v2}. Since one of these two pos-
sibilities must occur, it can not be that the system v1,v2,v3 is linearly dependent.
Therefore, we have shown that this system is linearly independent.

3. Let A be an m× n matrix. Complete the following definitions.

(a) The column space of A is . . .

Solution: the collection of all linear combinations of the columns vectors of A.

Variants of this definition are fine. Also okay:

• the span of the columns of A.

• the collection of vectors of the form Ax.
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• the set of b so that Ax = b has a solution.

(b) Recall that the null space N(A) is the set of vectors v ∈ Rn so that Av = 0. Prove that
N(A) is a subspace of Rn.

Solution: To prove N(A) is a subspace of Rn we need to show that 0 ∈ N(A) and
that N(A) is closed under addition and scalar multiplication.

To see 0 ∈ N(A) observe that A0 = 0.

To see that N(A) is closed under addition suppose that x1,x2 ∈ N(A). We need to
show that x1 + x2 ∈ N(A). Since x1,x2 ∈ N(A) we know Ax1 = 0 and Ax2 = 0.
Using the distributive property for matrix multiplication we see

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0.

Thus x1 + x2 ∈ N(A).

To see that N(A) is closed under scalar multiplication suppose that x ∈ N(A) and
c ∈ R. We need to show that cx ∈ N(A). Because we can pull scalars out of matrix
products we have

A(cx) = c(Ax) = c0 = 0,

so cx ∈ N(A).

4. True or False.

(a) If A is a square matrix with linearly independent columns, then A is invertible.

Solution: True. Let A be the square matrix with linearly independent columns. Then
there is a pivot in every row. Since pivots occur in different rows and columns, there
is also also pivot in every column. So, the reduced echelon form of A is I. So there is
an invertible matrix E with EA = I. Then A = E−1 and A is invertible with inverse
E.

(b) Five vectors in R4 can span R4.

Solution: True. For example e1, e2, e3, e4 and 0 span R4. (Here ei are the standard
basis vectors for R4; the columns of the identity matrix.)

(c) You can find five linearly independent vectors in R4.

Solution: False. This would mean R4 contained a 5-dimensional subspace, but we
know R4 is 4-dimensional.

(d) If the subspaces S and T of Rn share a common non-zero vector v, then S and T are not
orthogonal.

Solution: True. For S and T to be orthogonal any \ ∈ S and any t ∈ T must be
orthogonal. If v lies in both spaces then v must be orthogonal to itself. But this
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impossible in Rn since

v · v =
n∑

i=1

v2i .

Thus v · v > 0 unless all entries of v are zero.

(e) Two planar subspaces of R3 can be orthogonal.

Solution: No because of the previous part. Two planes intersect in a line, which
contains non-zero vectors. Since the two subspaces contain a common non-zero vector,
they can not be orthogonal.

5. Find a basis for the column space of

A =

 −2 4 −2 −4
2 −6 −3 1
−3 8 2 −3

 .

What is the rank of A? How about the dimension of the null space N(A)?

Solution: We begin by reducing A to its reduced echelon form. Omitting the work we see:

A ∼ R =

 1 0 6 5
0 1 5

2
3
2

0 0 0 0

 .

Now recall that a basis for the column space is given by the pivot columns of A. There is
a pivot in the first and second column, so a basis is

 −2
2
−3

 ,

 4
−6

8

 .

The rank of A is 2 because it has 2 pivots. The dimension of the null space of A is the
number of columns minus the rank, which is 4− 2 = 2.

6. Find a basis for the plane of solutions to the equation x + 2y + 3z = 0.

Solution: We need to convert this to something we know how to solve. Observe that

x + 2y + 3z =
(

1 2 3
) x

y
z

 .

So we are looking for a basis to N(A) where A =
(

1 2 3
)
. A basis is given by the

special solutions, one for each free variable. Since A is already in reduced echelon form, we
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can see the x-variable is dependent while the y- and z-variables are free. Solving for the
free variables yields x = −2y − 3z. So our solutions have the form x

y
z

 =

 −2y − 3z
y
z

 = y

 −2y
1
0

+ z

 −3
0
1

 .

So a basis for N(A) is given by {

 −2y
1
0

 ,

 −3
0
1

}.

7. Suppose A is a 4× 5 matrix and the reduced row echelon form of A is given by

R =


1 −1 0 −2 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0

 .

(a) Find a basis for N(A).

Solution: A basis for N(A) is given by the special solutions to Ax = 0. Since we are
given the reduced echelon form, we can see the dependent variables are x1, x3 and x5
and the free variables are x2 and x4. The solution set for Rx = 0 coincides with the
solution set to Ax = 0 and converting Rx = 0 to equations yields:

x1 − x2 − 2x4 = 0, x3 + 3x4 = 0 andx5 = 0.

Solving for the dependent variables yields:

x1 = x2 + 2x4 = 0, x3 = −3x4 andx5 = 0.

So an arbitrary solution has the form

x =


x1
x2
x3
x4
x5

 =


x2 + 2x4

x2
−3x4

x4
0

 = x2


1
1
0
0
0

+ x4


2
0
−3

1
0

 .

So, a basis for N(A) is given by {


1
1
0
0
0

 ,


2
0
−3

1
0

}.
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(b) Suppose Axp = b where

xp =


1
1
1
1
1

 and b =


1
2
3
4

 .

Find the complete solution to Ax = b.

Solution: Solutions to Ax = b have the form xp + s where s is a solution to Ax = 0.
A complete solution is then

1
1
1
1
1

+ x2


1
1
0
0
0

+ x4


2
0
−3

1
0

 .

8. Suppose the matrix A is 9×7 and has rank 4. What are the dimensions of C(A), C(AT ), N(A)
and N(AT )?

Solution: The number of rows of A is m = 9, the number of columns is n = 7 and the
rank is r = 4. We have dimC(A) = dimC(AT ) = r = 4, dimN(A) = n − r = 7 − 4 = 3
and dimN(AT ) = m− r = 9− 4 = 5. (These formulas can be memorized!)

9. Let A be an m× n matrix. Prove that the row space and null spaces of A are orthogonal.

Solution: Solution 1: We need to prove that y · x = 0 for any element y of the row
space and any element x of the null space of A. Recall y · x = yTx. Also if y is in the row
space C(AT ), we have y = AT z for some vector z. Then yT = zTA. Since x ∈ N(A) then
Ax = 0. Then

y · x = yTx = (zTA)x = zT (Ax) = zT0 = 0.

Solution 2: We need to prove that y · x = 0 for any element y of the row space and any
element x of the null space of A. Fix x and y. Let ri be the rows vectors of A. Then

A =

 rT1
...

rTm

 . Since x ∈ N(A),

0 = Ax =

 rT1 x
...

rTmx

 .
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Thus, the dot product rTi x = 0 for each i. Since y is in the row space, we have

y = c1r1 + . . . + cmrm

for some scalars c1, . . . , cm ∈ R. Then by the distributive property of matrix multiplication,

y · x = yTx = (c1r
T
1 + . . . + cmrTm)x = c1(r

T
1 x) + . . . + cm(rTmx) = c10 + . . . + cm0 = 0.

10. Fix positive integers m. Let A be an m × n matrix. Let M be the collection of all n × m
matrices.

(a) Prove that the the collection Z of all matrices B ∈ M so that AB is the zero matrix is a
subspace of M .

Solution: We need to show the zero matrix 0n×m is in Z and that Z is closed under
addition and scalar multiplication.

To see 0n×m ∈ Z observe A0n×m = 0m×m.

To see that Z is closed under addition, let B1, B2 ∈ Z. We need to show B1 +B2 ∈ Z.
Since B1, B2 ∈ Z we know AB1 = 0m×m and AB2 = 0m×m. By the distributive
property of matrix multiplication,

A(B1 + B2) = AB1 + AB2 = 0m×m + 0m×m = 0m×m.

To see that Z is closed under scalar multiplication, let B ∈ Z and let c ∈ R. We must
show that cB ∈ Z. Since B ∈ Z we know AB = 0m×m. Then,

A(cB) = c(AB) = c0m×m = 0m×m.

(b) The collection Z ′ of all matrices B ∈M so that BA is the zero matrix is also a subspace
of M . Are these subspaces equal? If they are, then explain why. If not, then give
a counterexample consisting of an explicit choice of m and n and a matrix A so that
Z 6= Z ′.

Solution: In general Z 6= Z ′. For example, suppose m = n = 2 and A =

(
0 1
0 0

)
.

Now let B be a general 2× 2 matrix, say B =

(
a b
c d

)
. Then

AB =

(
c d
0 0

)
and so Z = {

(
a b
c d

)
: c = d = 0}.

We can also compute

BA =

(
0 a
0 c

)
and so Z ′ = {

(
a b
c d

)
: a = c = 0}.
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You can see that Z 6= Z ′. For example, the matrix

(
2 3
0 0

)
is in Z but not in Z ′.

11. Find a basis for the orthogonal complement to span{v} in R3 where v =

 1
2
4

.

Solution: Observe span{v} is the row space of the matrix A =
(

1 2 4
)
, i.e., span{v} =

C(AT ). The matrix is already in reduced echelon form. By the Fundamental Theorem of
Linear Algebra II, we know the orthogonal complement to the row space is the null space.
So, we need to find a basis for N(A).

Observe that A is already in reduced echelon form. There is a pivot in the first column,
and the other columns correspond to free variables. The equation represented by the single
row of A in the equation Ax = 0 is

x1 + 2x2 + 4x3 = 0.

Solving for the dependent variable x1 yields

x1 = −2x2 − 4x3.

Then

x =

 x1
x2
x3

 =

 −2x2 − 4x3
x2
x3

 = x2

 −2
1
0

+ x3

 −4
0
1

 .

A basis for N(A) is given by {

 −2
1
0

 ,

 −4
0
1

}.

12. Let A be an n× n matrix. Prove that A is invertible if and only if C(A) = Rn.

Solution: We have to prove two statements:

1. If A is invertible, then C(A) = Rn.

2. If C(A) = Rn, then A is invertible.

To prove statement (1) is true, assume A is invertible. We will prove C(A) = Rn. To prove
this we need to show that for any b ∈ Rn, we have b ∈ C(A). Recall that C(A) is the
collection of linear combinations of the columns, and matrix-vector multiplication gives a
linear combination of the columns. So, we need to show Ax = b has a solution for all b.
Since A is invertible, it has an inverse A−1. Set x = A−1b. Then

Ax = A(A−1b) = (AA−1)b = Ib = b,
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so we have found a solution.

To prove statement (2) is true, assume C(A) = Rn. This means that dimC(A) = dimRn =
n. Since dimC(A) = n, this is the rank of A. That is A has n pivots. Let R be the reduced
echelon form of A. Since R is n×n, we know R has a pivot in each row and column. Thus
R = I. Since A ∼ I, there is an invertible matrix E so that EA = I. Then left multiplying
by E−1 we see A = E−1. This means that A is invertible (and its inverse is E).

Remark: Statement (1) can also be proved using row reduction. Suppose A is invertible.
Then A−1 exists. Let B = AT so that B−1 = (A−1)T . Then the column space of A
equals the row space of B. Now recall that the row spaces of all matrices obtained by row
reduction are the same. Since B is invertible, we can left multiply by the inverse matrix
B−1 to see that B row reduces to I. Thus, the row space of B and the row space of I are
identical. But, the row space of I is clearly Rn (and the rows form the standard basis for
Rn). Thus the column space of A is Rn as well.
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