Math 70100: Functions of a Real Variable I

Homework 9, due Wednesday, November 12th.

1. (Folland $\S 1.5 \# 30$) Let λ be Lebesgue measure on \mathbb{R}, and let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E)>0$. Show that for any $\alpha<1$, there is an open interval I so that $\lambda(E \cap I)>\alpha \lambda(I)$. (Hint: An open set in \mathbb{R} is a countable union of disjoint open intervals.)

Solution: Suppose the statement were false. Then there is a Lebesgue measureable set E with $\lambda(E)>0$ and an α with $0<\alpha<1$ so that

$$
\begin{equation*}
\lambda(E \cap I) \leq \alpha \lambda(I) \quad \text { for any open interval } I \subset \mathbb{R} \text {. } \tag{1}
\end{equation*}
$$

Since $\frac{1}{\alpha}>1$, we can find a open set A containing E so that

$$
\begin{equation*}
\lambda(A)<\frac{1}{\alpha} \lambda(E) . \tag{2}
\end{equation*}
$$

(Actually this is true for any E if we use Lebesgue outer measure above.) Recall that any open set is a countable union of disjoint open intervals. Let $\left\{A_{i}\right\}$ be those intervals. Because of equation 1, we observe that

$$
\lambda(E)=\sum_{i} \lambda\left(E \cap A_{i}\right) \leq \sum_{i} \alpha \lambda\left(A_{i}\right) \leq \alpha \lambda(A) .
$$

But, this is a contradiction since by including equation 2, we see

$$
\lambda(E) \leq \alpha \lambda(A)<\lambda(E)
$$

2. Imitate the construction of the middle-thirds Cantor set to show that for every c with $0<c<1$, there is a Cantor set $K \subset[0,1]$ whose Lebesgue measure is c.

Solution: Choose a c with $0<c<1$. Let $\left\{b_{n} \in \mathbb{R}: n \in \mathbb{N}\right\}$ be any strictly decreasing sequence of real numbers with $b_{1}<1$ and $\lim _{n \rightarrow \infty} b_{n}=c$.

In order to define our Cantor set, we define the following maps. If $[a, b]$ is a closed interval, and $\ell<b-a$ is a real number, we define

$$
L([a, b], \ell)=[a, a+\ell] \quad \text { and } \quad R([a, b], \ell)=[b-\ell, b] .
$$

Observe that so long as $2 \ell<b-a$, the intervals $L([a, b], \ell)$ and $R([a, b], \ell)$ are equal sized intervals obtained by removing the middle open interval of the length $b-a-2 \ell$ from $[a, b]$.

We will now inductively define some collections of closed intervals. Define $\mathcal{I}_{0}=\{[0,1]\}$. Now suppose \mathcal{I}_{i} is defined, we define

$$
\mathcal{I}_{i+1}=\left\{L\left(I, \frac{b_{i+1}}{2^{i+1}}\right): I \in \mathcal{I}_{i}\right\} \cup\left\{R\left(I, \frac{b_{i+1}}{2^{i+1}}\right): I \in \mathcal{I}_{i}\right\} .
$$

Observe that each \mathcal{I}_{i} consists of 2^{i} intervals each of length $\frac{b_{i}}{2^{i}}$. Because $b_{i+1}<b_{i}$, the intervals of \mathcal{I}_{i+1} are obtained by removing some middle open interval from the intervals of \mathcal{I}_{i}.

For each i, define $C_{i}=\bigcup\left\{I \in \mathcal{I}_{i}\right\}$. Then C_{i} is a disjoint union of 2^{i} intervas of length $\frac{b_{i}}{2^{i}}$. Therefore, $\lambda\left(C_{i}\right)=b_{i}$. The set $C=\bigcap_{i} C_{i}$ is a Cantor set, and by continuity of measure,

$$
\lambda(C)=\lim _{i \rightarrow \infty} \lambda\left(C_{i}\right)=\lim _{i \rightarrow \infty} b_{i}=c
$$

3. (Borel-Cantelli Lemma) Let (X, Σ, μ) be a measure space with $\mu(X)<\infty$. Suppose the sequence of sets $\left\{E_{n} \in \Sigma: n \in \mathbb{N}\right\}$ satisfies $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty$. Show that the set

$$
A=\left\{x \in X: \text { there are infinitely many } n \in \mathbb{N} \text { so that } x \in E_{n}\right\}
$$

is measurable (lies in Σ) and has measure zero.

Solution: For $N \in \mathbb{N}$, define $B_{N}=\bigcup_{n=N}^{\infty} E_{n}$. Then $B_{N} \in \Sigma$ and

$$
A=\bigcap_{N=1}^{\infty} B_{N} \in \Sigma
$$

Observe that by countable subadditivity, we have

$$
\mu\left(B_{N}\right) \leq \sum_{n=N}^{\infty} \mu\left(E_{n}\right)
$$

Since $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty$, we have $\mu\left(B_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$. Then by continuity of measure,

$$
\mu(A)=\lim _{N \rightarrow \infty} \mu\left(B_{N}\right)=0
$$

4. Construct a Lebesgue measurable set $E \subset[0,1]$ of Lebesgue measure $\frac{1}{2}$ such that both E and $[0,1] \backslash E$ are dense in $[0,1]$.
5. (Folland $\S 1.2 \# 10)$ Show that if (X, Σ, μ) is a measure space and $E \in \Sigma$, then the function $\mu_{E}: \Sigma \rightarrow[0, \infty]$ defined by $\mu_{E}(A)=\mu(A \cap E)$ is a measure.

Solution: We need to check that $\mu_{E}(\emptyset)=0$ and that μ_{E} is countably additive.

First observe that

$$
\mu_{E}(\emptyset)=\mu(\emptyset \cap E)=\mu(\emptyset)=0
$$

since μ is a measure.

Now suppose that $\left\{A_{i} \in \Sigma\right\}$ is a disjoint and countable. Let $A=\bigcup_{i} A_{i}$. Observe that $A \cap E=\bigcup_{i}\left(A_{i} \cap E\right)$. The collection $\left\{A_{i} \cap E\right\}$ is countable and disjoint, so because μ is a measure, we have

$$
\mu_{E}(A)=\mu(A \cap E)=\sum_{i} \mu\left(A_{i} \cap E\right)=\sum_{i} \mu_{E}\left(A_{i}\right) .
$$

So, μ_{E} is countably additive.
6. (Based on Folland $\S 1.2$ \# 7) Let Σ be a σ-algebra on the set X. Show that the collection of all measures on (X, Σ) is a closed convex cone in the sense that if μ_{1} and μ_{2} are measures on (X, Σ) and $c_{1}, c_{2} \geq 0$, then so is $c_{1} \mu_{1}+c_{2} \mu_{2}$. Are these measures closed under countable sums?

Solution: Let μ_{1} and μ_{2} be measures on (X, Σ) and let $c_{1}, c_{2} \geq 0$. We will show that $\nu=c_{1} \mu_{1}+c_{2} \mu_{2}$ is a measure. Observe that

$$
\nu(\emptyset)=c_{1} \mu_{1}(\emptyset)+c_{2} \mu_{2}(\emptyset)=c_{1} \cdot 0+c_{2} \cdot 0=0 .
$$

Also, let $\left\{A_{i}\right\} \subset \Sigma$ be a countable disjoint collection whose union is A, then by countable additivity applied to μ_{1} and μ_{2} has

$$
\begin{aligned}
\nu(A) & =c_{1} \mu_{1}(A)+c_{2} \mu_{2}(A)=c_{1} \sum_{i} \mu_{1}\left(A_{i}\right)+c_{2} \sum_{i} \mu_{2}\left(A_{i}\right) \\
& =\sum_{i}\left(c_{1} \mu_{1}\left(A_{i}\right)+c_{2} \mu_{2}\left(A_{i}\right)\right)=\sum_{i} \nu\left(A_{i}\right) .
\end{aligned}
$$

This shows ν is a measure.

Now suppose that $\left\{\mu_{i}\right\}$ is a countable collection of measures on (X, Σ). Let $\nu=\sum_{i} \mu_{i}$. We have

$$
\nu(\emptyset)=\sum_{i} \mu_{i}(\emptyset)=\sum_{i} 0=0 .
$$

Now suppose that $\left\{A_{j}\right\} \subset \Sigma$ is a countable collection of measurable sets, and let A be the union of these sets. Then by countable additivity of each μ_{i},

$$
\nu(A)=\sum_{i} \mu_{i}(A)=\sum_{i} \sum_{j} \mu_{i}\left(A_{j}\right) .
$$

We will show below that we can switch the order of this sum. So, we have

$$
\nu(A)=\sum_{j} \sum_{i} \mu_{i}\left(A_{j}\right)=\sum_{j} \nu\left(A_{j}\right) .
$$

This proves that ν is a measure.

In order to switch the sum above, we will show that whenever $\left\{a_{i, j}: i, j \in \mathbb{N}\right\}$ is a collection of non-negative real numbers, we have

$$
\sum_{i} \sum_{j} a_{i, j}=\sum_{j} \sum_{i} a_{i, j} .
$$

To do this, by symmetry it suffices to show that

$$
\sum_{i} \sum_{j} a_{i, j} \geq \sum_{j} \sum_{i} a_{i, j} .
$$

To check this, let M be any number strictly less than the right hand side, i.e.,

$$
\begin{equation*}
M<\sum_{j} \sum_{i} a_{i, j} . \tag{3}
\end{equation*}
$$

Since M is arbitrary, it suffices to prove that

$$
\begin{equation*}
\sum_{i} \sum_{j} a_{i, j} \geq M \tag{4}
\end{equation*}
$$

By equation 3, we see that there is a J so that

$$
M<\sum_{j=1}^{J} \sum_{i=1}^{\infty} a_{i, j} .
$$

Let $b_{j}=\sum_{i=1}^{\infty} a_{i, j}$. Let $\epsilon=\left(\sum_{j=1}^{J} b_{j}\right)-M>0$. For each $j \in\{1, \ldots, J\}$ there is an $I_{j} \in \mathbb{N}$ so that

$$
\sum_{i=1}^{I_{j}} a_{i, j}>b_{j}-\frac{\epsilon}{J}
$$

Now let $I=\max \left\{I_{1}, \ldots, I_{J}\right\} \in \mathbb{N}$. Then,

$$
\sum_{j=1}^{J} \sum_{i=1}^{I} a_{i, j}>\sum_{j=1}^{J}\left(b_{j}-\frac{\epsilon}{J}\right)=M
$$

Now because we are only working with finite sums, we have

$$
M<\sum_{i=1}^{I} \sum_{j=1}^{J} a_{i, j} \leq \sum_{i=1}^{I} \sum_{j=1}^{\infty} a_{i, j} \leq \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i, j} .
$$

This verifies equation 4 as required.
7. (Folland $\S 1.4 \#$ 18) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra on X. Let $\mathcal{A}_{\sigma} \subset \mathcal{P}(X)$ denote the collection of all countable unions of sets in \mathcal{A}, and let $\mathcal{A}_{\sigma \delta}$ denote the collection of all countable intersections of sets in \mathcal{A}_{σ}. Let μ_{0} be a premeasure on \mathcal{A} and let μ^{*} be the induced outer measure.
(a) Show that for any $E \subset X$ and any $\epsilon>0$, there is an $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^{*}(A) \leq$ Page 4
$\mu^{*}(E)+\epsilon$.
Solution: If $\mu^{*}(E)=\infty$, then we can take $A=X$, which lies in \mathcal{A} because it is an algebra. By monotonicity, we also have $\mu^{*}(X)=\infty$.

Now assume $\mu^{*}(E)<\infty$ and let $\epsilon>0$. Then by definition, $\mu^{*}(E)$ is the infimum over all countable unions $A=\bigcup_{i} A_{i} \in A_{\sigma}$ of $\sum_{i} \mu_{0}\left(A_{i}\right)$. So, in particular, we can find such an A so that $\sum_{i} \mu_{0}\left(A_{i}\right)<\mu^{*}(E)+\epsilon$. Recall $\mu^{*}\left(A_{i}\right)=\mu_{0}\left(A_{i}\right)$ since each $A_{i} \in \mathcal{A}$. By applying monotonicity and countable subadditivity, we see

$$
\mu^{*}(E) \leq \mu^{*}(A) \leq \sum_{i} \mu_{0}\left(A_{i}\right)<\mu(E)+\epsilon
$$

(b) Suppose $\mu^{*}(E)<\infty$. Show that E is measurable if and only if there is a $B \in \mathcal{A}_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$.

Solution: First suppose $E \subset X$ is measurable and $\mu^{*}(E)<\infty$. From the previous part, for any $n \in \mathbb{N}$, there is an $A_{n} \in A_{\sigma}$ containing E so that $\mu^{*}\left(A_{n}\right)<\mu^{*}(E)+\frac{1}{n}$. Define $B=\cap_{n} A_{n} \in \mathcal{A}_{\sigma \delta}$. Then by monotonicity twice, we see for each n that

$$
\mu^{*}(E) \leq \mu^{*}(B) \leq \mu^{*}\left(A_{n}\right)<\mu^{*}(E)+\frac{1}{n}
$$

Since this holds for arbitrary n, we see $\mu^{*}(B)=\mu^{*}(E)$. Now because E is measurable, we have

$$
\mu^{*}(B)=\mu^{*}(B \cap E)+\mu^{*}(B \backslash E)
$$

Observe that $B \cap E=E$ and so $\mu^{*}(B)=\mu^{*}(B \cap E)$. Therefore $\mu^{*}(B \backslash E)$.

Let $E \subset X$. This time contrary to the statement of the problem, we will not assume that $\mu^{*}(E)<\infty$. Suppose there is a $B \in \mathcal{A}_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$. We will verify that E is measurable by definition. Let $A \subset X$ be arbitrary. We need to check that

$$
\mu^{*}(A)=\mu^{*}(A \cap E)+\mu^{*}(A \backslash E)
$$

By subadditivity, we get clearly have

$$
\mu^{*}(A) \leq \mu^{*}(A \cap E)+\mu^{*}(A \backslash E)
$$

So, it remains to show the other inequality (\geq). Observe that B is measurable since it lies in the σ-algebra generated by \mathcal{A}. Therefore we know that

$$
\begin{equation*}
\mu^{*}(A)=\mu^{*}(A \cap B)+\mu^{*}(A \backslash B) \tag{5}
\end{equation*}
$$

Observe that $A \cap E \subset A \cap B$, so we see

$$
\begin{equation*}
\mu^{*}(A \cap B) \geq \mu^{*}(A \cap E) \tag{6}
\end{equation*}
$$

On the other hand, by measurability of B again, we have

$$
\begin{equation*}
\mu^{*}(A \backslash E)=\mu^{*}((A \backslash E) \backslash B)+\mu^{*}((A \backslash E) \cap B) . \tag{7}
\end{equation*}
$$

Observe that $(A \backslash E) \cap B=A \cap(B \backslash E)$ and $\mu^{*}(B \backslash E)=0$ by assumption. Therefore, by monotonicity, we see that $\mu^{*}((A \backslash E) \cap B)=0$. Also we can simplify $(A \backslash E) \backslash B$ as $A \backslash B$, since $E \subset B$. So equation 7 can be rewritten as

$$
\begin{equation*}
\mu^{*}(A \backslash E)=\mu^{*}(A \backslash B) \tag{8}
\end{equation*}
$$

By combining equations 5, 6 and 8, we see

$$
\mu^{*}(A)=\mu^{*}(A \cap B)+\mu^{*}(A \backslash B) \geq \mu^{*}(A \cap E)+\mu^{*}(A \backslash E)
$$

We conclude that E is measurable.
(c) Recall that μ_{0} is σ-finite if there is a countable collection $\left\{C_{i}\right\} \subset \mathcal{A}$ with $\bigcup_{i} C_{i}=X$ and $\mu_{0}\left(C_{i}\right)<\infty$ for all i. Show that if μ_{0} is σ-finite, then even if $\mu^{*}(E)=\infty$ the statement from part (b) still holds.

Solution: We assume μ_{0} is σ-finite and $\left\{C_{i}\right\}$ are as given in the problem. If the collection is finite, then X would have finite outer measure, so we can assume that $\left\{C_{i}\right\}$ is indexed by the natural numbers.

We will briefly describe the standard trick which allows us to make the collection $\left\{C_{i}\right\}$ disjoint. For each $i \in \mathbb{N}$ define

$$
D_{i}=C_{i} \backslash \bigcup_{j<i} C_{j} .
$$

Observe that these sets are pairwise disjoint, cover X, and $D_{i} \subset C_{i}$ so by monotonicity $\mu^{0}\left(C_{i}\right)<\mu^{0}\left(D_{i}\right)$.

Suppose E is measurable and $\mu^{*}(E)=\infty$. Since each $E \cap D_{i}$ is measurable, by part (a), for each i and each n there is an $A_{n, i} \in \mathcal{A}_{\sigma}$ containing $E \cap D_{i}$ so that

$$
\mu^{*}\left(A_{n, i}\right)<\mu^{*}\left(E \cap D_{i}\right)+\frac{1}{n 2^{2}} .
$$

Observe that because $E \cap D_{i}$ is measurable and they are pairwise disjoint, we have $\sum_{i} \mu^{*}\left(E \cap D_{i}\right)=\mu^{*}(E)$. Set $A_{n}=\bigcup_{i} A_{n, i}$, which also lies in \mathcal{A}_{σ}. Now observe that

$$
A_{n} \backslash E=\bigcup_{i}\left(A_{n, i} \backslash E\right) \subset \bigcup_{i}\left(A_{n, i} \backslash\left(E \cap D_{i}\right)\right)
$$

So by countable subadditivity and measurability,

$$
\mu^{*}\left(A_{n} \backslash E\right) \leq \sum_{i} \mu^{*}\left(A_{n, i} \backslash\left(E \cap D_{i}\right)\right)=\sum_{i} \mu^{*}\left(A_{n, i}\right)-\mu^{*}\left(E \cap D_{i}\right)<\sum_{i} \frac{1}{n 2^{i}}=\frac{1}{n}
$$

Now set $B=\bigcap_{n} A_{n} \in \mathcal{A}_{\sigma \delta}$, which contains E. By monotonicity, we have

$$
\mu^{*}(B \backslash E) \leq \mu^{*}\left(A_{n} \backslash E\right)<\frac{1}{n}
$$

for each n, so $\mu^{*}(B \backslash E)=0$.

For the converse, observe that the proof we gave of the converse in part (b) did not assume that $\mu^{*}(E)<\infty$. Indeed σ-finiteness of μ_{0} is not needed for the converse.

