Math 70100: Functions of a Real Variable |
Homework 9, due Wednesday, November 12th.

1. (Folland §1.5 # 30) Let X be Lebesgue measure on R, and let £ C R be a Lebesgue measurable
set with A(F)) > 0. Show that for any o < 1, there is an open interval I so that A(ENI) > aA(]).
(Hint: An open set in R is a countable union of disjoint open intervals.)

Solution: Suppose the statement were false. Then there is a Lebesgue measureable set
with A(E) > 0 and an o with 0 < o < 1 so that

AMENI) <aXI) forany open interval I C R. (1)
Since i > 1, we can find a open set A containing E so that
1
AMA) < =A(E). (2)
!
(Actually this is true for any F if we use Lebesgue outer measure above.) Recall that any

open set is a countable union of disjoint open intervals. Let {A;} be those intervals. Because
of equation [T, we observe that

Z)\EﬂA <Za)\ ) < al(A).

But, this is a contradiction since by including equation [2], we see

AE) < ar(A) < A(B).

2. Imitate the construction of the middle-thirds Cantor set to show that for every ¢ with 0 < ¢ < 1,
there is a Cantor set K C [0, 1] whose Lebesgue measure is c.

Solution: Choose a ¢ with 0 < ¢ < 1. Let {b, € R : n € N} be any strictly decreasing
sequence of real numbers with b; < 1 and lim,,_,+ b, = c.

In order to define our Cantor set, we define the following maps. If [a, b] is a closed interval,
and ¢ < b — a is a real number, we define

L(la,b],0) = la,a+¥¢] and R([a,b],€)=[b—1,0].

Observe that so long as 20 < b — a, the intervals L([a,b],¢) and R([a,b], () are equal sized
intervals obtained by removing the middle open interval of the length b — a — 2¢ from [a, b].

We will now inductively define some collections of closed intervals. Define Z, = {[0, 1]}.
Now suppose Z; is defined, we define

T = {L(I, ”1 . 1€ L} U{R(UI bl*i):IeL}.




Observe that each Z; consists of 2 intervals each of length %  Because bii 1 < b;, the intervals
of Z;,1 are obtained by removing some middle open interval from the intervals of Z;.

For each i, define C; = (J {[ € Z;}. Then C; is a disjoint union of 2¢ intervas of length b
Therefore, A(C;) = b;. The set C' =), C; is a Cantor set, and by continuity of measure,

A(C) = lim A(C;) = lim b; = c.

1—00 1—00

3. (Borel-Cantelli Lemma) Let (X, %, u) be a measure space with u(X) < oco. Suppose the se-
quence of sets {E,, € ¥ : n € N} satisfies Y>>, pu(E,) < co. Show that the set

A ={x € X : there are infinitely many n € N so that x € E,}

is measurable (lies in ) and has measure zero.

Solution: For N € N, define By = J.—_y E,. Then By € ¥ and

A:ﬁBNEE.

N=1

Observe that by countable subadditivity, we have

M(BN) < Z M(En)

n=N

Since 7 u(E,) < oo, we have u(By) — 0 as N — co. Then by continuity of measure,

p(A) = lim p(By) = 0.

4. Construct a Lebesgue measurable set E C [0, 1] of Lebesgue measure % such that both E and
[0,1] \ E are dense in [0, 1].

5. (Folland §1.2 # 10) Show that if (X,X, ) is a measure space and E € ¥, then the function
pg X — [0,00] defined by pug(A) = u(AN E) is a measure.

Solution: We need to check that pg(f) = 0 and that ug is countably additive.

First observe that

pe0) = p@NE) = u®) =0,
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since p is a measure.

Now suppose that {A; € X} is a disjoint and countable. Let A = J; A;. Observe that
ANE = J;(A;NE). The collection {A; N E'} is countable and disjoint, so because p is a
measure, we have

pe(A) = AN E) = > (AN E) = 3 uslA)).

So, pug is countably additive.

6. (Based on Folland §1.2 # 7) Let ¥ be a og-algebra on the set X. Show that the collection of
all measures on (X, ) is a closed convex cone in the sense that if y; and py are measures on
(X,3) and ¢p, ¢y > 0, then so is ¢y 1 + copia. Are these measures closed under countable sums?

Solution: Let p; and puy be measures on (X, ) and let ¢1,¢; > 0. We will show that
vV = 141 + Colig is a measure. Observe that

v(0) = c1p1(0) 4 copa(@) =1 -0+ co- 0= 0.

Also, let {A;} C ¥ be a countable disjoint collection whose union is A, then by countable
additivity applied to pu; and uo has

v(A) = cy(A) +copa(A) = ¢ Z p1(Ai) + ¢ Z pr2(A;)

= Z (cllul(Ai) + CQMQ(Az‘)) = Z v(A).

7 %

This shows v is a measure.

Now suppose that {/;} is a countable collection of measures on (X, X). Let v =" p;. We
have
v(0) =Y m@)=> 0=0.

Now suppose that {A4;} C X is a countable collection of measurable sets, and let A be the
union of these sets. Then by countable additivity of each pu;,

v(4) = Z/M(A) = ZZW(AJ)-

We will show below that we can switch the order of this sum. So, we have

v(A) = ZZM(AJ') = v(4y).

J

This proves that v is a measure.

Page 3



In order to switch the sum above, we will show that whenever {a;; : ¢,j € N} is a collection
of non-negative real numbers, we have

D)WL 3 M
i D
To do this, by symmetry it suffices to show that
DIPILTED PP I
i i

To check this, let M be any number strictly less than the right hand side, i.e.,
M < Z Z Qi ;- (3)
i

Since M is arbitrary, it suffices to prove that

2.0 gz M @)
i
By equation [3, we see that there is a J so that

J oo
M < ZZCL@J.

=1 i=1

Let b; = > 02, a;;. Let e = (ijl bj) — M > 0. For each j € {1,...,J} thereis an I; € N

so that
I; ¢
Zam > bj — —.
=1 J

Now let I = max{Iy,...,I;} € N. Then,

Now because we are only working with finite sums, we have

1 J I 00 0o

M<Zzaz‘,j§ Z%jﬁ

i=1 j=1 i=1 j=1 %

00
E CL,‘J‘.

1 5=1

This verifies equation ] as required.

7. (Folland §1.4 # 18) Let A C P(X) be an algebra on X. Let A, C P(X) denote the collection of
all countable unions of sets in A, and let A,s denote the collection of all countable intersections
of sets in A,. Let uy be a premeasure on A and let u* be the induced outer measure.

(a) Show that for any £ C X and any € > 0, there is an A € A, with £ C A and p*(A) <
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W(E) +e.

Solution: If u*(F) = oo, then we can take A = X, which lies in 4 because it is an
algebra. By monotonicity, we also have p*(X) = oc.

Now assume p*(E) < oo and let € > 0. Then by definition, p*(E) is the infimum over
all countable unions A = J, 4; € A, of >, 10(A;). So, in particular, we can find such
an A so that ). 110(A;) < p*(E) + €. Recall p*(A;) = po(A;) since each A; € A. By
applying monotonicity and countable subadditivity, we see

pr(E) < pr(A) < ZMO(Ai) <p(E) +e

(b) Suppose p*(E) < co. Show that E is measurable if and only if there is a B € A,s with
E C B and p*(B~\ E)=0.

Solution: First suppose £ C X is measurable and p*(E) < oo. From the previous
part, for any n € N, there is an A, € A, containing E so that u*(4,) < p*(E) + .
Define B =N, A, € A,s. Then by monotonicity twice, we see for each n that

i (B) < ' (B) < ' (Au) < " (B) +

Since this holds for arbitrary n, we see p*(B) = u*(E). Now because E is measurable,

we have
p'(B) = p (BNE)+p (BN E).

Observe that BN E = E and so u*(B) = p*(B N E). Therefore p*(B \ E).

Let £ C X. This time contrary to the statement of the problem, we will not assume
that p*(E) < oco. Suppose there is a B € A,s with E C B and p*(B \ E) = 0. We
will verify that F is measurable by definition. Let A C X be arbitrary. We need to
check that

W(A) = 1*(ANE) + 1 (A~ B).

By subadditivity, we get clearly have
p(A) S p (AN E) + p (AN E).

So, it remains to show the other inequality (>). Observe that B is measurable since it
lies in the o-algebra generated by A. Therefore we know that

pr(A) = p (AN B) + p* (AN B). (5)
Observe that AN E C AN B, so we see

p(ANB) = p(ANE). (6)
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On the other hand, by measurability of B again, we have
p(ANE)=p (ANE)NB) +p* ((ANE)NB). (7)

Observe that (ANE)NB = AN(B\E) and p*(B\ E) = 0 by assumption. Therefore,
by monotonicity, we see that y*((A \ E) N B) = 0. Also we can simplify (A \ E) \ B
as A\ B, since E C B. So equation [7] can be rewritten as

§*(A~ E) = (A B) (5)
By combining equations [5, [6] and [8] we see
p(A) =p (ANB) + (AN B) 2 p'(ANE) + p* (AN E).

We conclude that E is measurable.

(c) Recall that p is o-finite if there is a countable collection {C;} C A with |J, C; = X and
po(C;) < oo for all i. Show that if g is o-finite, then even if u*(F) = oo the statement
from part (b) still holds.

Solution: We assume g is o-finite and {C;} are as given in the problem. If the
collection is finite, then X would have finite outer measure, so we can assume that
{C;} is indexed by the natural numbers.

We will briefly describe the standard trick which allows us to make the collection {C;}
disjoint. For each i € N define

DZ' = CZ AN UOJ
i<t

Observe that these sets are pairwise disjoint, cover X, and D; C C; so by monotonicity
1(Ci) < p(Di).

Suppose FE is measurable and p*(E) = co. Since each E'N D; is measurable, by part
(a), for each ¢ and each n there is an A,,; € A, containing £ N D; so that

1
n2t’

Observe that because E' N D; is measurable and they are pairwise disjoint, we have

Yo (END;) = p*(E). Set A, =, An,i, which also lies in A,. Now observe that

P (Ani) < p*(END;) +

Ao~ E=| A~ EBE) | (A~ (ENDy)).

So by countable subadditivity and measurability,

p(A N E) <) it (Ans ~ (EN D)) ZN —p(END) <> S

n2t n

%
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Now set B =), A, € Agys, which contains £. By monotonicity, we have

1
p(BNE) <@ (AN B) < —,

for each n, so u*(B \ E) = 0.

For the converse, observe that the proof we gave of the converse in part (b) did not
assume that p*(FE) < co. Indeed o-finiteness of jig is not needed for the converse.
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