
Math 70100: Functions of a Real Variable I
Homework 9, due Wednesday, November 12th.

1. (Folland §1.5 # 30) Let λ be Lebesgue measure on R, and let E ⊂ R be a Lebesgue measurable
set with λ(E) > 0. Show that for any α < 1, there is an open interval I so that λ(E∩I) > αλ(I).
(Hint: An open set in R is a countable union of disjoint open intervals.)

Solution: Suppose the statement were false. Then there is a Lebesgue measureable set E
with λ(E) > 0 and an α with 0 < α < 1 so that

λ(E ∩ I) ≤ αλ(I) for any open interval I ⊂ R. (1)

Since 1
α
> 1, we can find a open set A containing E so that

λ(A) <
1

α
λ(E). (2)

(Actually this is true for any E if we use Lebesgue outer measure above.) Recall that any
open set is a countable union of disjoint open intervals. Let {Ai} be those intervals. Because
of equation 1, we observe that

λ(E) =
∑
i

λ(E ∩ Ai) ≤
∑
i

αλ(Ai) ≤ αλ(A).

But, this is a contradiction since by including equation 2, we see

λ(E) ≤ αλ(A) < λ(E).

2. Imitate the construction of the middle-thirds Cantor set to show that for every c with 0 < c < 1,
there is a Cantor set K ⊂ [0, 1] whose Lebesgue measure is c.

Solution: Choose a c with 0 < c < 1. Let {bn ∈ R : n ∈ N} be any strictly decreasing
sequence of real numbers with b1 < 1 and limn→∞ bn = c.

In order to define our Cantor set, we define the following maps. If [a, b] is a closed interval,
and ` < b− a is a real number, we define

L([a, b], `) = [a, a+ `] and R([a, b], `) = [b− `, b].

Observe that so long as 2` < b − a, the intervals L([a, b], `) and R([a, b], `) are equal sized
intervals obtained by removing the middle open interval of the length b− a− 2` from [a, b].

We will now inductively define some collections of closed intervals. Define I0 = {[0, 1]}.
Now suppose Ii is defined, we define

Ii+1 =
{
L(I,

bi+1

2i+1
) : I ∈ Ii

}
∪
{
R(I,

bi+1

2i+1
) : I ∈ Ii

}
.



Observe that each Ii consists of 2i intervals each of length bi
2i

. Because bi+1 < bi, the intervals
of Ii+1 are obtained by removing some middle open interval from the intervals of Ii.

For each i, define Ci =
⋃{

I ∈ Ii}. Then Ci is a disjoint union of 2i intervas of length bi
2i

.
Therefore, λ(Ci) = bi. The set C =

⋂
iCi is a Cantor set, and by continuity of measure,

λ(C) = lim
i→∞

λ(Ci) = lim
i→∞

bi = c.

3. (Borel-Cantelli Lemma) Let (X,Σ, µ) be a measure space with µ(X) < ∞. Suppose the se-
quence of sets {En ∈ Σ : n ∈ N} satisfies

∑∞
n=1 µ(En) <∞. Show that the set

A = {x ∈ X : there are infinitely many n ∈ N so that x ∈ En}

is measurable (lies in Σ) and has measure zero.

Solution: For N ∈ N, define BN =
⋃∞
n=N En. Then BN ∈ Σ and

A =
∞⋂
N=1

BN ∈ Σ.

Observe that by countable subadditivity, we have

µ(BN) ≤
∞∑
n=N

µ(En).

Since
∑∞

n=1 µ(En) <∞, we have µ(BN)→ 0 as N →∞. Then by continuity of measure,

µ(A) = lim
N→∞

µ(BN) = 0.

4. Construct a Lebesgue measurable set E ⊂ [0, 1] of Lebesgue measure 1
2

such that both E and
[0, 1] r E are dense in [0, 1].

5. (Folland §1.2 # 10) Show that if (X,Σ, µ) is a measure space and E ∈ Σ, then the function
µE : Σ→ [0,∞] defined by µE(A) = µ(A ∩ E) is a measure.

Solution: We need to check that µE(∅) = 0 and that µE is countably additive.

First observe that
µE(∅) = µ(∅ ∩ E) = µ(∅) = 0,
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since µ is a measure.

Now suppose that {Ai ∈ Σ} is a disjoint and countable. Let A =
⋃
iAi. Observe that

A ∩ E =
⋃
i(Ai ∩ E). The collection {Ai ∩ E} is countable and disjoint, so because µ is a

measure, we have

µE(A) = µ(A ∩ E) =
∑
i

µ(Ai ∩ E) =
∑
i

µE(Ai).

So, µE is countably additive.

6. (Based on Folland §1.2 # 7) Let Σ be a σ-algebra on the set X. Show that the collection of
all measures on (X,Σ) is a closed convex cone in the sense that if µ1 and µ2 are measures on
(X,Σ) and c1, c2 ≥ 0, then so is c1µ1 + c2µ2. Are these measures closed under countable sums?

Solution: Let µ1 and µ2 be measures on (X,Σ) and let c1, c2 ≥ 0. We will show that
ν = c1µ1 + c2µ2 is a measure. Observe that

ν(∅) = c1µ1(∅) + c2µ2(∅) = c1 · 0 + c2 · 0 = 0.

Also, let {Ai} ⊂ Σ be a countable disjoint collection whose union is A, then by countable
additivity applied to µ1 and µ2 has

ν(A) = c1µ1(A) + c2µ2(A) = c1
∑
i

µ1(Ai) + c2
∑
i

µ2(Ai)

=
∑
i

(
c1µ1(Ai) + c2µ2(Ai)

)
=
∑
i

ν(Ai).

This shows ν is a measure.

Now suppose that {µi} is a countable collection of measures on (X,Σ). Let ν =
∑

i µi. We
have

ν(∅) =
∑
i

µi(∅) =
∑
i

0 = 0.

Now suppose that {Aj} ⊂ Σ is a countable collection of measurable sets, and let A be the
union of these sets. Then by countable additivity of each µi,

ν(A) =
∑
i

µi(A) =
∑
i

∑
j

µi(Aj).

We will show below that we can switch the order of this sum. So, we have

ν(A) =
∑
j

∑
i

µi(Aj) =
∑
j

ν(Aj).

This proves that ν is a measure.
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In order to switch the sum above, we will show that whenever {ai,j : i, j ∈ N} is a collection
of non-negative real numbers, we have∑

i

∑
j

ai,j =
∑
j

∑
i

ai,j.

To do this, by symmetry it suffices to show that∑
i

∑
j

ai,j ≥
∑
j

∑
i

ai,j.

To check this, let M be any number strictly less than the right hand side, i.e.,

M <
∑
j

∑
i

ai,j. (3)

Since M is arbitrary, it suffices to prove that∑
i

∑
j

ai,j ≥M. (4)

By equation 3, we see that there is a J so that

M <
J∑
j=1

∞∑
i=1

ai,j.

Let bj =
∑∞

i=1 ai,j. Let ε = (
∑J

j=1 bj) −M > 0. For each j ∈ {1, . . . , J} there is an Ij ∈ N
so that

Ij∑
i=1

ai,j > bj −
ε

J
.

Now let I = max{I1, . . . , IJ} ∈ N. Then,

J∑
j=1

I∑
i=1

ai,j >

J∑
j=1

(bj −
ε

J
) = M.

Now because we are only working with finite sums, we have

M <

I∑
i=1

J∑
j=1

ai,j ≤
I∑
i=1

∞∑
j=1

ai,j ≤
∞∑
i=1

∞∑
j=1

ai,j.

This verifies equation 4 as required.

7. (Folland §1.4 # 18) Let A ⊂ P(X) be an algebra on X. Let Aσ ⊂ P(X) denote the collection of
all countable unions of sets in A, and let Aσδ denote the collection of all countable intersections
of sets in Aσ. Let µ0 be a premeasure on A and let µ∗ be the induced outer measure.

(a) Show that for any E ⊂ X and any ε > 0, there is an A ∈ Aσ with E ⊂ A and µ∗(A) ≤
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µ∗(E) + ε.

Solution: If µ∗(E) = ∞, then we can take A = X, which lies in A because it is an
algebra. By monotonicity, we also have µ∗(X) =∞.

Now assume µ∗(E) <∞ and let ε > 0. Then by definition, µ∗(E) is the infimum over
all countable unions A =

⋃
iAi ∈ Aσ of

∑
i µ0(Ai). So, in particular, we can find such

an A so that
∑

i µ0(Ai) < µ∗(E) + ε. Recall µ∗(Ai) = µ0(Ai) since each Ai ∈ A. By
applying monotonicity and countable subadditivity, we see

µ∗(E) ≤ µ∗(A) ≤
∑
i

µ0(Ai) < µ(E) + ε.

(b) Suppose µ∗(E) < ∞. Show that E is measurable if and only if there is a B ∈ Aσδ with
E ⊂ B and µ∗(B r E) = 0.

Solution: First suppose E ⊂ X is measurable and µ∗(E) < ∞. From the previous
part, for any n ∈ N, there is an An ∈ Aσ containing E so that µ∗(An) < µ∗(E) + 1

n
.

Define B = ∩nAn ∈ Aσδ. Then by monotonicity twice, we see for each n that

µ∗(E) ≤ µ∗(B) ≤ µ∗(An) < µ∗(E) +
1

n
.

Since this holds for arbitrary n, we see µ∗(B) = µ∗(E). Now because E is measurable,
we have

µ∗(B) = µ∗(B ∩ E) + µ∗(B r E).

Observe that B ∩ E = E and so µ∗(B) = µ∗(B ∩ E). Therefore µ∗(B r E).

Let E ⊂ X. This time contrary to the statement of the problem, we will not assume
that µ∗(E) < ∞. Suppose there is a B ∈ Aσδ with E ⊂ B and µ∗(B r E) = 0. We
will verify that E is measurable by definition. Let A ⊂ X be arbitrary. We need to
check that

µ∗(A) = µ∗(A ∩ E) + µ∗(Ar E).

By subadditivity, we get clearly have

µ∗(A) ≤ µ∗(A ∩ E) + µ∗(Ar E).

So, it remains to show the other inequality (≥). Observe that B is measurable since it
lies in the σ-algebra generated by A. Therefore we know that

µ∗(A) = µ∗(A ∩B) + µ∗(ArB). (5)

Observe that A ∩ E ⊂ A ∩B, so we see

µ∗(A ∩B) ≥ µ∗(A ∩ E). (6)
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On the other hand, by measurability of B again, we have

µ∗(Ar E) = µ∗
(
(Ar E) rB

)
+ µ∗

(
(Ar E) ∩B

)
. (7)

Observe that (ArE)∩B = A∩(BrE) and µ∗(BrE) = 0 by assumption. Therefore,
by monotonicity, we see that µ∗

(
(ArE) ∩B

)
= 0. Also we can simplify (ArE) rB

as ArB, since E ⊂ B. So equation 7 can be rewritten as

µ∗(Ar E) = µ∗
(
ArB) (8)

By combining equations 5, 6 and 8, we see

µ∗(A) = µ∗(A ∩B) + µ∗(ArB) ≥ µ∗(A ∩ E) + µ∗(Ar E).

We conclude that E is measurable.

(c) Recall that µ0 is σ-finite if there is a countable collection {Ci} ⊂ A with
⋃
iCi = X and

µ0(Ci) < ∞ for all i. Show that if µ0 is σ-finite, then even if µ∗(E) = ∞ the statement
from part (b) still holds.

Solution: We assume µ0 is σ-finite and {Ci} are as given in the problem. If the
collection is finite, then X would have finite outer measure, so we can assume that
{Ci} is indexed by the natural numbers.

We will briefly describe the standard trick which allows us to make the collection {Ci}
disjoint. For each i ∈ N define

Di = Ci r
⋃
j<i

Cj.

Observe that these sets are pairwise disjoint, cover X, and Di ⊂ Ci so by monotonicity
µ0(Ci) < µ0(Di).

Suppose E is measurable and µ∗(E) = ∞. Since each E ∩ Di is measurable, by part
(a), for each i and each n there is an An,i ∈ Aσ containing E ∩Di so that

µ∗(An,i) < µ∗(E ∩Di) +
1

n2i
.

Observe that because E ∩ Di is measurable and they are pairwise disjoint, we have∑
i µ
∗(E ∩Di) = µ∗(E). Set An =

⋃
iAn,i, which also lies in Aσ. Now observe that

An r E =
⋃
i

(An,i r E) ⊂
⋃
i

(
An,i r (E ∩Di)

)
.

So by countable subadditivity and measurability,

µ∗(An r E) ≤
∑
i

µ∗
(
An,i r (E ∩Di)

)
=
∑
i

µ∗(An,i)− µ∗(E ∩Di) <
∑
i

1

n2i
=

1

n
.
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Now set B =
⋂
nAn ∈ Aσδ, which contains E. By monotonicity, we have

µ∗(B r E) ≤ µ∗(An r E) <
1

n
,

for each n, so µ∗(B r E) = 0.

For the converse, observe that the proof we gave of the converse in part (b) did not
assume that µ∗(E) <∞. Indeed σ-finiteness of µ0 is not needed for the converse.
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