Math 70100: Functions of a Real Variable I Homework 9, due Wednesday, November 12th.

- 1. (Folland §1.5 # 30) Let λ be Lebesgue measure on \mathbb{R} , and let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E) > 0$. Show that for any $\alpha < 1$, there is an open interval I so that $\lambda(E \cap I) > \alpha \lambda(I)$. (*Hint:* An open set in \mathbb{R} is a countable union of disjoint open intervals.)
- 2. Imitate the construction of the middle-thirds Cantor set to show that for every c with 0 < c < 1, there is a Cantor set $K \subset [0, 1]$ whose Lebesgue measure is c.
- 3. (Borel-Cantelli Lemma) Let (X, Σ, μ) be a measure space with $\mu(X) < \infty$. Suppose the sequence of sets $\{E_n \in \Sigma : n \in \mathbb{N}\}$ satisfies $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Show that the set

 $A = \{x \in X : \text{ there are infinitely many } n \in \mathbb{N} \text{ so that } x \in E_n\}$

is measurable (lies in Σ) and has measure zero.

- 4. Construct a Lebesgue measurable set $E \subset [0,1]$ of Lebesgue measure $\frac{1}{2}$ such that both E and $[0,1] \smallsetminus E$ are dense in [0,1].
- 5. (Folland §1.2 # 10) Show that if (X, Σ, μ) is a measure space and $E \in \Sigma$, then the function $\mu_E : \Sigma \to [0, \infty]$ defined by $\mu_E(A) = \mu(A \cap E)$ is a measure.
- 6. (Based on Folland §1.2 # 7) Let Σ be a σ -algebra on the set X. Show that the collection of all measures on (X, Σ) is a closed convex cone in the sense that if μ_1 and μ_2 are measures on (X, Σ) and $c_1, c_2 \ge 0$, then so is $c_1\mu_1 + c_2\mu_2$. Are these measures closed under countable sums?
- 7. (Folland §1.4 # 18) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra on X. Let $\mathcal{A}_{\sigma} \subset \mathcal{P}(X)$ denote the collection of all countable unions of sets in \mathcal{A} , and let $\mathcal{A}_{\sigma\delta}$ denote the collection of all countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and let μ^* be the induced outer measure.
 - (a) Show that for any $E \subset X$ and any $\epsilon > 0$, there is an $A \in \mathcal{A}_{\sigma}$ with with $E \subset A$ and $\mu^*(A) \leq \mu^*(E) + \epsilon$.
 - (b) Suppose $\mu^*(E) < \infty$. Show that *E* is measurable if and only if there is a $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \smallsetminus E) = 0$.
 - (c) Recall that μ_0 is σ -finite if there is a countable collection $\{C_i\} \subset \mathcal{A}$ with $\bigcup_i C_i = X$ and $\mu_0(C_i) < \infty$ for all *i*. Show that if μ_0 is σ -finite, then even if $\mu^*(E) = \infty$ the statement from part (b) still holds.