Math 70100: Functions of a Real Variable I

Homework 9, due Wednesday, November 12th.

1. (Folland $\S 1.5 \# 30$) Let λ be Lebesgue measure on \mathbb{R}, and let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\lambda(E)>0$. Show that for any $\alpha<1$, there is an open interval I so that $\lambda(E \cap I)>\alpha \lambda(I)$. (Hint: An open set in \mathbb{R} is a countable union of disjoint open intervals.)
2. Imitate the construction of the middle-thirds Cantor set to show that for every c with $0<c<1$, there is a Cantor set $K \subset[0,1]$ whose Lebesgue measure is c.
3. (Borel-Cantelli Lemma) Let (X, Σ, μ) be a measure space with $\mu(X)<\infty$. Suppose the sequence of sets $\left\{E_{n} \in \Sigma: n \in \mathbb{N}\right\}$ satisfies $\sum_{n=1}^{\infty} \mu\left(E_{n}\right)<\infty$. Show that the set

$$
A=\left\{x \in X: \text { there are infinitely many } n \in \mathbb{N} \text { so that } x \in E_{n}\right\}
$$

is measurable (lies in Σ) and has measure zero.
4. Construct a Lebesgue measurable set $E \subset[0,1]$ of Lebesgue measure $\frac{1}{2}$ such that both E and $[0,1] \backslash E$ are dense in $[0,1]$.
5. (Folland $\S 1.2 \not \# 10)$ Show that if (X, Σ, μ) is a measure space and $E \in \Sigma$, then the function $\mu_{E}: \Sigma \rightarrow[0, \infty]$ defined by $\mu_{E}(A)=\mu(A \cap E)$ is a measure.
6. (Based on Folland $\S 1.2$ \# 7) Let Σ be a σ-algebra on the set X. Show that the collection of all measures on (X, Σ) is a closed convex cone in the sense that if μ_{1} and μ_{2} are measures on (X, Σ) and $c_{1}, c_{2} \geq 0$, then so is $c_{1} \mu_{1}+c_{2} \mu_{2}$. Are these measures closed under countable sums?
7. (Folland $\S 1.4 \#$ 18) Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra on X. Let $\mathcal{A}_{\sigma} \subset \mathcal{P}(X)$ denote the collection of all countable unions of sets in \mathcal{A}, and let $\mathcal{A}_{\sigma \delta}$ denote the collection of all countable intersections of sets in \mathcal{A}_{σ}. Let μ_{0} be a premeasure on \mathcal{A} and let μ^{*} be the induced outer measure.
(a) Show that for any $E \subset X$ and any $\epsilon>0$, there is an $A \in \mathcal{A}_{\sigma}$ with with $E \subset A$ and $\mu^{*}(A) \leq \mu^{*}(E)+\epsilon$.
(b) Suppose $\mu^{*}(E)<\infty$. Show that E is measurable if and only if there is a $B \in \mathcal{A}_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$.
(c) Recall that μ_{0} is σ-finite if there is a countable collection $\left\{C_{i}\right\} \subset \mathcal{A}$ with $\bigcup_{i} C_{i}=X$ and $\mu_{0}\left(C_{i}\right)<\infty$ for all i. Show that if μ_{0} is σ-finite, then even if $\mu^{*}(E)=\infty$ the statement from part (b) still holds.

