Math 70100: Functions of a Real Variable |
Homework 8, due Wednesday, November 5.

Name: Insert your name here.

1. (Combines Pugh’s Ch. 6 # 1-2) Let f : R — R be f(x) = ax + b for some a,b € R. Prove that
m*o f(A) = |a| - m*(A) for each A C R, where m* is the Lebesgue outer measure on R.

Solution: Let B = f(A). First we deal with the case when a = 0. Then B=0if A =10
and B = {b} otherwise. In either case, we see B C (b — €,b+ ¢€), so

m*(B) <inf |(b—¢€,b+ €)| = inf 2¢ = 0.
>0 e>0

Since m*(B) > 0 by definition, we see m*(B) = 0. This agrees with the formula provided
since a = 0.

Now suppose a # 0. Observe {I;} is a countable cover of A by open intervals if and only if
{f(Ix)} is a countable cover of B = f(A) by open intervals. Furthermore,

|[F (k)] = lall 1]

Therefore,

m*(B) = inf{y_ |f(L)|} = inf{) _lal - |Ik]} = |a| inf{)_ 1]} = m*(A).

where the infima are taken over all countable covers {I;} of A by open intervals.

2. Use the formula from the prior problem to show that the middle third Cantor set C' satisfies
m*(C) = 0, where m* is Lebesgue outer measure. (Hint: Use the self-similarity.)

Solution: Observe that C' C [0,1] so that m*(C) < 1. Observe that the two maps

_:U—|—2

x
fl(x):§ and fo(z) = 3

restrict to bijections from C' to the left and right half of C', respectively. Therefore m* o
fi(C) = 3m*(C) for each i € {1,2}. By subadditivity,

m*(C) <m*o f1(C)+m" o fo(C) = gm*(C’)

By solving for m*(C'), we see m*(C') < 0. Therefore m*(C') = 0.

3. (Royden §2.2 # 7) A set of real numbers is said to be a G4 set if it is the intersection of a
countable collection of open sets. Show that for any bounded set E, there is a G5 set G for
which £ C G and m*(G) = m*(E).



Solution: Let E be a bounded set. Then because E can be contained in a bounded
interval, m*(E) < oo. By definition of m*, for each integer n > 1, there is a countable
covering Z" = {I]'} by open intervals so that

1
> |Ip| < m*(E) + -
k

For each n, consider the open set U, = |J, I}, which by construction contains E. Define
G =), Uy, which is a G5 set. Then £ C G. By monotonicity of m*, we have m*(E) <
m*(G). Furthermore, Z" is a covering of G for all n. Therefore

m*(G) < inf Y || < inf (m” (E) + %) = m*(E).

It follows that we have m*(E) = m*(G).

4. Fix some real number d > 0. For a subset A C R and § > 0, let
H{(A) = inf { Y |1},
k

where the infimum is taken over all countable covers {I;} of A by open intervals each of which
has length less than 0. The d-dimensional Hausdorff outer measure of A is

HYA) = lim H(A).
0—0
You can use without proof that H¢ is an outer measure. You may also use without proof that
when d = 1, H? is the Lebesgue outer measure on R.

(a) Explain why if 6 < &', then H¢(A) > H%(A) for every A C R. (Remark: It follows that
HY(A) = sups.o Hj(A).)

Solution: Fix A C R and d > 0. For each § > 0, let Cs5 denote the collection of all
covers of A by open intervals each of which has diameter less than §. Observe that if
0 < ¢, then Cs5 C Cs. Therefore,

H{(A) = inf {> 11"} > inf { Y |1|"} = H(A),

TeCs TeCy

since the first infimum is taken over a smaller set of values.

(b) Show that H?([0,1]) = 0 for every d > 1.

Solution: Let d > 1. Let § > 0. We will show that HZ([0,1]) = 0. For each integer
n > 0 and each € > 0, define the covering

In,e - {(i — €, s

+e) : 0<i<n},
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which is a covering of [0, 1] by n open intervals each with length % + 2¢. Then,
d 1 d
H5([0,1]) < n(ﬁ + 2¢)
whenever % + 2e < 0. Then,

1
HY([0,1]) < lim lim n(~ +26)¢ = lim — = 0.

n—oo e—0+ n n—oo nd B

So, we see that HZ([0,1]) = 0 for all § > 0. It follows that

H([0,1]) = sup H;([0,1]) = 0.

(c) Comment: There was an error in the approach set out by the problem asked on the original
homework. What follows is an appropriate replacement.

Let L € R be positive, and let k£ be a positive integer. Let
k
A={vecRF: viZOandZvi:L}.
i=1

Fix ad € R with 0 < d < 1. Consider the function

k
m: A —R; VP—>ZV?.
i=1

Let e; € R¥ be the vector with a 1 in the i-th position and all other entries zero. Then the
global minima for the function m occur at the points Le; € A, and so m(v) > L? for all
v e A.

Solution: The statement is clear when k = 1, since A = {L} contains only one point
which must be the minimum of m. Furthermore, L = Le; is the mimimum.

Now consider the case when k = 2. Here
A={(tL—-t) : 0<t <L}

We have
m(t, L —t) =t + (L — )%

Since L is a constant, we think of this as a function of ¢. Observe that the image of
the function is positive and takes the value L¢ at the endpoints. Since the function is
differentiable, the minimum is either attained at the endpoints or at a critical point.
Observe that

i[td+ (L—1t)4] =

y7 (¢t = (L=t ).

ISR

Page 3



At a critical point, we must have t*! — (L — ¢)?~! = 0, which implies ¢t = £. At this
value of ¢, we see that
214

Since 0 < d < 1, this is clearly larger than L%, so we see the minima occur at (L,0)
and (0, L), where the value of he function is L.

Finally consider the case when k > 2. Suppose v € R¥ is a global minimum for m and
that v is not of the form stated in the problem. Then there are distinct indices ¢ and
J so that v; # 0 and v; # 0. Let £ = v; + v;. From case when k = 2, observe that

< v v?.
Now define the vector w € R* by
w,=¢ ifn=31

w,=<¢w,=0 ifn=j

w, =V, otherwise.

We observe that w € A because the sum of the entries are the same as the sum of the
entries of v and
m(v) —m(w) =v{ +vi— (>0,

which contradicts our original assumption that v was a global minimum.

Use the prior part to argue that H%([0,1]) = oo whenever 0 < d < 1.

Solution: Suppose 0 < d < 1, and let 6 > 0. Let n be the largest number so that
2nd < 1. We will show that
H{([0,1]) > n”. (1)

To prove the claim, let Z be a countable covering of [0, 1] by open intervals of length
less than 6. For i € {1,...,n}, let A; = [2id, (2i 4+ 1)d]. Define

Observe that the Z; are pairwise disjoint, because the intervals A; are pairwise separated

by at least 0. In particular,
)= SIS

1€l 1=1 I€Z;

Now observe that A; is compact and Z; is an open cover. So, there is a finite subcover
J; C Z;. Then by the prior part, we see that

SE= DI =6

I€Z; JeJ;
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Since the above inequality holds for all 7, we see that

> |1 > na.

Iel

Since H¢([0,1]) is an infimum of such quantities, we see equation[lholds, i.e., HZ([0, 1]) >
no?.

In order to conclude the proof, we need to argue that HZ([0, 1]) can be made arbitrarily
large. Then it will follow from part (a) that H%([0, 1]) = co. For eachn € N, let 4, = 5-
(so that ¢,, determines n as written above). Now using L’Hopital’s rule that

. n . . (2n)td
lim —— = lim ——— = lim =00
n—o0 (2n)d n—oo 2(2n)d_1 n—oo

Since H{ ((0,1]) > @nya» we see that H{ ([0,1]) can be made arbitrarily large by taking

0 = 5= sufficiently small. Thus H%([0,1]) = oo as claimed.

Final remarks on this problem: It can be shown that for any set A C R, there is a unique
0 < D <1 so that

HYA) =00 for0<d<D and HYA)=0 ford> D.

This number D is called the Hausdorff dimension of A. Once you do the exercises above,
you will have shown that the Hausdorff dimension of [0, 1] is 1.
If you would like a challenge, try to show that the Hausdorff dimension of the middle third

]
Cantor set is 1©82
log 3
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