Math 70100: Functions of a Real Variable I Homework 8, due Wednesday, November 5.

Name: Insert your name here.

1. (Combines Pugh's Ch. 6\#1-2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=a x+b$ for some $a, b \in \mathbb{R}$. Prove that $m^{*} \circ f(A)=|a| \cdot m^{*}(A)$ for each $A \subset \mathbb{R}$, where m^{*} is the Lebesgue outer measure on \mathbb{R}.

Solution: Let $B=f(A)$. First we deal with the case when $a=0$. Then $B=\emptyset$ if $A=\emptyset$ and $B=\{b\}$ otherwise. In either case, we see $B \subset(b-\epsilon, b+\epsilon)$, so

$$
m^{*}(B) \leq \inf _{\epsilon>0}|(b-\epsilon, b+\epsilon)|=\inf _{\epsilon>0} 2 \epsilon=0 .
$$

Since $m^{*}(B) \geq 0$ by definition, we see $m^{*}(B)=0$. This agrees with the formula provided since $a=0$.

Now suppose $a \neq 0$. Observe $\left\{I_{k}\right\}$ is a countable cover of A by open intervals if and only if $\left\{f\left(I_{k}\right)\right\}$ is a countable cover of $B=f(A)$ by open intervals. Furthermore,

$$
\left|f\left(I_{k}\right)\right|=|a|\left|I_{k}\right| .
$$

Therefore,

$$
m^{*}(B)=\inf \left\{\sum_{k}\left|f\left(I_{k}\right)\right|\right\}=\inf \left\{\sum_{k}|a| \cdot\left|I_{k}\right|\right\}=|a| \inf \left\{\sum_{k}\left|I_{k}\right|\right\}=m^{*}(A) .
$$

where the infima are taken over all countable covers $\left\{I_{k}\right\}$ of A by open intervals.
2. Use the formula from the prior problem to show that the middle third Cantor set C satisfies $m^{*}(C)=0$, where m^{*} is Lebesgue outer measure. (Hint: Use the self-similarity.)

Solution: Observe that $C \subset[0,1]$ so that $m^{*}(C) \leq 1$. Observe that the two maps

$$
f_{1}(x)=\frac{x}{3} \quad \text { and } \quad f_{2}(x)=\frac{x+2}{3}
$$

restrict to bijections from C to the left and right half of C, respectively. Therefore $m^{*} \circ$ $f_{i}(C)=\frac{1}{3} m^{*}(C)$ for each $i \in\{1,2\}$. By subadditivity,

$$
m^{*}(C) \leq m^{*} \circ f_{1}(C)+m^{*} \circ f_{2}(C)=\frac{2}{3} m^{*}(C)
$$

By solving for $m^{*}(C)$, we see $m^{*}(C) \leq 0$. Therefore $m^{*}(C)=0$.
3. (Royden §2.2 \# 7) A set of real numbers is said to be a G_{δ} set if it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a G_{δ} set G for which $E \subset G$ and $m^{*}(G)=m^{*}(E)$.

Solution: Let E be a bounded set. Then because E can be contained in a bounded interval, $m^{*}(E)<\infty$. By definition of m^{*}, for each integer $n \geq 1$, there is a countable covering $\mathcal{I}^{n}=\left\{I_{k}^{n}\right\}$ by open intervals so that

$$
\sum_{k}\left|I_{k}^{n}\right| \leq m^{*}(E)+\frac{1}{n}
$$

For each n, consider the open set $U_{n}=\bigcup_{k} I_{k}^{n}$, which by construction contains E. Define $G=\bigcap_{n} U_{n}$, which is a G_{δ} set. Then $E \subset G$. By monotonicity of m^{*}, we have $m^{*}(E) \leq$ $m^{*}(G)$. Furthermore, \mathcal{I}^{n} is a covering of G for all n. Therefore

$$
m^{*}(G) \leq \inf _{n} \sum_{k}\left|I_{k}^{n}\right| \leq \inf _{n}\left(m^{*}(E)+\frac{1}{n}\right)=m^{*}(E)
$$

It follows that we have $m^{*}(E)=m^{*}(G)$.
4. Fix some real number $d \geq 0$. For a subset $A \subset \mathbb{R}$ and $\delta>0$, let

$$
H_{\delta}^{d}(A)=\inf \left\{\sum_{k}\left|I_{k}\right|^{d}\right\},
$$

where the infimum is taken over all countable covers $\left\{I_{k}\right\}$ of A by open intervals each of which has length less than δ. The d-dimensional Hausdorff outer measure of A is

$$
H^{d}(A)=\lim _{\delta \rightarrow 0} H_{\delta}^{d}(A) .
$$

You can use without proof that H^{d} is an outer measure. You may also use without proof that when $d=1, H^{d}$ is the Lebesgue outer measure on \mathbb{R}.
(a) Explain why if $\delta<\delta^{\prime}$, then $H_{\delta}^{d}(A) \geq H_{\delta^{\prime}}^{d}(A)$ for every $A \subset \mathbb{R}$. (Remark: It follows that $H^{d}(A)=\sup _{\delta>0} H_{\delta}^{d}(A)$.)

Solution: Fix $A \subset \mathbb{R}$ and $d \geq 0$. For each $\delta>0$, let \mathcal{C}_{δ} denote the collection of all covers of A by open intervals each of which has diameter less than δ. Observe that if $\delta<\delta^{\prime}$, then $\mathcal{C}_{\delta} \subset \mathcal{C}_{\delta^{\prime}}$. Therefore,

$$
H_{\delta}^{d}(A)=\inf _{\mathcal{I} \in \mathcal{C}_{\delta}}\left\{\sum_{I \in \mathcal{I}}|I|^{d}\right\} \geq \inf _{\mathcal{I} \in \mathcal{C}_{\delta^{\prime}}}\left\{\sum_{I \in \mathcal{I}}|I|^{d}\right\}=H_{\delta^{\prime}}^{d}(A),
$$

since the first infimum is taken over a smaller set of values.
(b) Show that $H^{d}([0,1])=0$ for every $d>1$.

Solution: Let $d>1$. Let $\delta>0$. We will show that $H_{\delta}^{d}([0,1])=0$. For each integer $n \geq 0$ and each $\epsilon>0$, define the covering

$$
\mathcal{I}_{n, \epsilon}=\left\{\left(\frac{i}{n}-\epsilon, \frac{i+1}{n}+\epsilon\right): 0 \leq i<n\right\},
$$

which is a covering of $[0,1]$ by n open intervals each with length $\frac{1}{n}+2 \epsilon$. Then,

$$
H_{\delta}^{d}([0,1]) \leq n\left(\frac{1}{n}+2 \epsilon\right)^{d}
$$

whenever $\frac{1}{n}+2 \epsilon<\delta$. Then,

$$
H_{\delta}^{d}([0,1]) \leq \lim _{n \rightarrow \infty} \lim _{\epsilon \rightarrow 0^{+}} n\left(\frac{1}{n}+2 \epsilon\right)^{d}=\lim _{n \rightarrow \infty} \frac{n}{n^{d}}=0
$$

So, we see that $H_{\delta}^{d}([0,1])=0$ for all $\delta>0$. It follows that

$$
H^{d}([0,1])=\sup _{\delta>0} H_{\delta}^{d}([0,1])=0 .
$$

(c) Comment: There was an error in the approach set out by the problem asked on the original homework. What follows is an appropriate replacement.
Let $L \in \mathbb{R}$ be positive, and let k be a positive integer. Let

$$
\Delta=\left\{\mathbf{v} \in \mathbb{R}^{k}: v_{i} \geq 0 \text { and } \sum_{i=1}^{k} v_{i}=L\right\}
$$

Fix a $d \in \mathbb{R}$ with $0<d<1$. Consider the function

$$
m: \Delta \rightarrow \mathbb{R} ; \quad \mathbf{v} \mapsto \sum_{i=1}^{k} \mathbf{v}_{i}^{d}
$$

Let $\mathbf{e}_{i} \in \mathbb{R}^{k}$ be the vector with a 1 in the i-th position and all other entries zero. Then the global minima for the function m occur at the points $L \mathbf{e}_{i} \in \Delta$, and so $m(\mathbf{v}) \geq L^{d}$ for all $\mathbf{v} \in \Delta$.

Solution: The statement is clear when $k=1$, since $\Delta=\{L\}$ contains only one point which must be the minimum of m. Furthermore, $L=L \mathbf{e}_{1}$ is the mimimum.

Now consider the case when $k=2$. Here

$$
\Delta=\{(t, L-t): 0 \leq t \leq L\}
$$

We have

$$
m(t, L-t)=t^{d}+(L-t)^{d} .
$$

Since L is a constant, we think of this as a function of t. Observe that the image of the function is positive and takes the value L^{d} at the endpoints. Since the function is differentiable, the minimum is either attained at the endpoints or at a critical point. Observe that

$$
\frac{d}{d t}\left[t^{d}+(L-t)^{d}\right]=\frac{1}{d}\left(t^{d-1}-(L-t)^{d-1}\right)
$$

At a critical point, we must have $t^{d-1}-(L-t)^{d-1}=0$, which implies $t=\frac{L}{2}$. At this value of t, we see that

$$
m(t, L-t)=\frac{2 L^{d}}{2^{d}}
$$

Since $0<d<1$, this is clearly larger than L^{d}, so we see the minima occur at $(L, 0)$ and $(0, L)$, where the value of he function is L^{d}.

Finally consider the case when $k>2$. Suppose $\mathbf{v} \in \mathbb{R}^{k}$ is a global minimum for m and that \mathbf{v} is not of the form stated in the problem. Then there are distinct indices i and j so that $\mathbf{v}_{i} \neq 0$ and $\mathbf{v}_{j} \neq 0$. Let $\ell=\mathbf{v}_{i}+\mathbf{v}_{j}$. From case when $k=2$, observe that

$$
\ell^{d}<\mathbf{v}_{i}^{d}+\mathbf{v}_{j}^{d} .
$$

Now define the vector $\mathbf{w} \in \mathbb{R}^{k}$ by

$$
\mathbf{w}_{n}= \begin{cases}\mathbf{w}_{n}=\ell & \text { if } n=i \\ \mathbf{w}_{n}=0 & \text { if } n=j \\ \mathbf{w}_{n}=\mathbf{v}_{n} & \text { otherwise }\end{cases}
$$

We observe that $\mathbf{w} \in \Delta$ because the sum of the entries are the same as the sum of the entries of \mathbf{v} and

$$
m(\mathbf{v})-m(\mathbf{w})=\mathbf{v}_{i}^{d}+\mathbf{v}_{j}^{d}-\ell^{d}>0
$$

which contradicts our original assumption that \mathbf{v} was a global minimum.
(d) Use the prior part to argue that $H^{d}([0,1])=\infty$ whenever $0<d<1$.

Solution: Suppose $0<d<1$, and let $\delta>0$. Let n be the largest number so that $2 n \delta \leq 1$. We will show that

$$
\begin{equation*}
H_{\delta}^{d}([0,1]) \geq n \delta^{d} \tag{1}
\end{equation*}
$$

To prove the claim, let \mathcal{I} be a countable covering of $[0,1]$ by open intervals of length less than δ. For $i \in\{1, \ldots, n\}$, let $A_{i}=[2 i \delta,(2 i+1) \delta]$. Define

$$
\mathcal{I}_{i}=\left\{I \in \mathcal{I}: I \cap A_{i} \neq \emptyset\right\} .
$$

Observe that the \mathcal{I}_{i} are pairwise disjoint, because the intervals A_{i} are pairwise separated by at least δ. In particular,

$$
\sum_{I \in \mathcal{I}}|I|^{d} \geq \sum_{i=1}^{n} \sum_{I \in \mathcal{I}_{i}}|I|^{d}
$$

Now observe that A_{i} is compact and \mathcal{I}_{i} is an open cover. So, there is a finite subcover $\mathcal{J}_{i} \subset \mathcal{I}_{i}$. Then by the prior part, we see that

$$
\sum_{I \in \mathcal{I}_{i}}|I|^{d} \geq \sum_{J \in \mathcal{J}_{i}}|J|^{d} \geq \delta^{d}
$$

Since the above inequality holds for all i, we see that

$$
\sum_{I \in \mathcal{I}}|I|^{d} \geq n \delta^{d}
$$

Since $H_{\delta}^{d}([0,1])$ is an infimum of such quantities, we see equation 1 holds, i.e., $H_{\delta}^{d}([0,1]) \geq$ $n \delta^{d}$.

In order to conclude the proof, we need to argue that $H_{\delta}^{d}([0,1])$ can be made arbitrarily large. Then it will follow from part (a) that $H^{d}([0,1])=\infty$. For each $n \in \mathbb{N}$, let $\delta_{n}=\frac{1}{2 n}$ (so that δ_{n} determines n as written above). Now using L'Hôpital's rule that

$$
\lim _{n \rightarrow \infty} \frac{n}{(2 n)^{d}}=\lim _{n \rightarrow \infty} \frac{1}{2(2 n)^{d-1}}=\lim _{n \rightarrow \infty} \frac{(2 n)^{1-d}}{2}=\infty
$$

Since $H_{\delta_{n}}^{d}([0,1]) \geq \frac{n}{(2 n)^{d}}$, we see that $H_{\delta_{n}}^{d}([0,1])$ can be made arbitrarily large by taking $\delta=\frac{1}{2 n}$ sufficiently small. Thus $H^{d}([0,1])=\infty$ as claimed.

Final remarks on this problem: It can be shown that for any set $A \subset \mathbb{R}$, there is a unique $0 \leq D \leq 1$ so that

$$
H^{d}(A)=\infty \quad \text { for } 0 \leq d<D \quad \text { and } \quad H^{d}(A)=0 \quad \text { for } d>D
$$

This number D is called the Hausdorff dimension of A. Once you do the exercises above, you will have shown that the Hausdorff dimension of $[0,1]$ is 1 .
If you would like a challenge, try to show that the Hausdorff dimension of the middle third Cantor set is $\frac{\log 2}{\log 3}$.

