
Math 70100: Functions of a Real Variable I
Homework 8, due Wednesday, November 5.

Name: Insert your name here.

1. (Combines Pugh’s Ch. 6 # 1-2) Let f : R→ R be f(x) = ax+ b for some a, b ∈ R. Prove that
m∗ ◦ f(A) = |a| ·m∗(A) for each A ⊂ R, where m∗ is the Lebesgue outer measure on R.

Solution: Let B = f(A). First we deal with the case when a = 0. Then B = ∅ if A = ∅
and B = {b} otherwise. In either case, we see B ⊂ (b− ε, b+ ε), so

m∗(B) ≤ inf
ε>0
|(b− ε, b+ ε)| = inf

ε>0
2ε = 0.

Since m∗(B) ≥ 0 by definition, we see m∗(B) = 0. This agrees with the formula provided
since a = 0.

Now suppose a 6= 0. Observe {Ik} is a countable cover of A by open intervals if and only if
{f(Ik)} is a countable cover of B = f(A) by open intervals. Furthermore,

|f(Ik)| = |a||Ik|.

Therefore,

m∗(B) = inf{
∑
k

|f(Ik)|} = inf{
∑
k

|a| · |Ik|} = |a| inf{
∑
k

|Ik|} = m∗(A).

where the infima are taken over all countable covers {Ik} of A by open intervals.

2. Use the formula from the prior problem to show that the middle third Cantor set C satisfies
m∗(C) = 0, where m∗ is Lebesgue outer measure. (Hint: Use the self-similarity.)

Solution: Observe that C ⊂ [0, 1] so that m∗(C) ≤ 1. Observe that the two maps

f1(x) =
x

3
and f2(x) =

x+ 2

3

restrict to bijections from C to the left and right half of C, respectively. Therefore m∗ ◦
fi(C) = 1

3
m∗(C) for each i ∈ {1, 2}. By subadditivity,

m∗(C) ≤ m∗ ◦ f1(C) +m∗ ◦ f2(C) =
2

3
m∗(C).

By solving for m∗(C), we see m∗(C) ≤ 0. Therefore m∗(C) = 0.

3. (Royden §2.2 # 7) A set of real numbers is said to be a Gδ set if it is the intersection of a
countable collection of open sets. Show that for any bounded set E, there is a Gδ set G for
which E ⊂ G and m∗(G) = m∗(E).



Solution: Let E be a bounded set. Then because E can be contained in a bounded
interval, m∗(E) < ∞. By definition of m∗, for each integer n ≥ 1, there is a countable
covering In = {Ink } by open intervals so that∑

k

|Ink | ≤ m∗(E) +
1

n
.

For each n, consider the open set Un =
⋃
k I

n
k , which by construction contains E. Define

G =
⋂
n Un, which is a Gδ set. Then E ⊂ G. By monotonicity of m∗, we have m∗(E) ≤

m∗(G). Furthermore, In is a covering of G for all n. Therefore

m∗(G) ≤ inf
n

∑
k

|Ink | ≤ inf
n

(
m∗(E) +

1

n

)
= m∗(E).

It follows that we have m∗(E) = m∗(G).

4. Fix some real number d ≥ 0. For a subset A ⊂ R and δ > 0, let

Hd
δ (A) = inf

{∑
k

|Ik|d
}
,

where the infimum is taken over all countable covers {Ik} of A by open intervals each of which
has length less than δ. The d-dimensional Hausdorff outer measure of A is

Hd(A) = lim
δ→0

Hd
δ (A).

You can use without proof that Hd is an outer measure. You may also use without proof that
when d = 1, Hd is the Lebesgue outer measure on R.

(a) Explain why if δ < δ′, then Hd
δ (A) ≥ Hd

δ′(A) for every A ⊂ R. (Remark: It follows that
Hd(A) = supδ>0H

d
δ (A).)

Solution: Fix A ⊂ R and d ≥ 0. For each δ > 0, let Cδ denote the collection of all
covers of A by open intervals each of which has diameter less than δ. Observe that if
δ < δ′, then Cδ ⊂ Cδ′ . Therefore,

Hd
δ (A) = inf

I∈Cδ

{∑
I∈I

|I|d
}
≥ inf
I∈Cδ′

{∑
I∈I

|I|d
}

= Hd
δ′(A),

since the first infimum is taken over a smaller set of values.

(b) Show that Hd([0, 1]) = 0 for every d > 1.

Solution: Let d > 1. Let δ > 0. We will show that Hd
δ ([0, 1]) = 0. For each integer

n ≥ 0 and each ε > 0, define the covering

In,ε = {( i
n
− ε, i+ 1

n
+ ε) : 0 ≤ i < n},
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which is a covering of [0, 1] by n open intervals each with length 1
n

+ 2ε. Then,

Hd
δ ([0, 1]) ≤ n(

1

n
+ 2ε)d

whenever 1
n

+ 2ε < δ. Then,

Hd
δ ([0, 1]) ≤ lim

n→∞
lim
ε→0+

n(
1

n
+ 2ε)d = lim

n→∞

n

nd
= 0.

So, we see that Hd
δ ([0, 1]) = 0 for all δ > 0. It follows that

Hd([0, 1]) = sup
δ>0

Hd
δ ([0, 1]) = 0.

(c) Comment: There was an error in the approach set out by the problem asked on the original
homework. What follows is an appropriate replacement.

Let L ∈ R be positive, and let k be a positive integer. Let

∆ = {v ∈ Rk : vi ≥ 0 and
k∑
i=1

vi = L}.

Fix a d ∈ R with 0 < d < 1. Consider the function

m : ∆→ R; v 7→
k∑
i=1

vdi .

Let ei ∈ Rk be the vector with a 1 in the i-th position and all other entries zero. Then the
global minima for the function m occur at the points Lei ∈ ∆, and so m(v) ≥ Ld for all
v ∈ ∆.

Solution: The statement is clear when k = 1, since ∆ = {L} contains only one point
which must be the minimum of m. Furthermore, L = Le1 is the mimimum.

Now consider the case when k = 2. Here

∆ = {(t, L− t) : 0 ≤ t ≤ L}.

We have
m(t, L− t) = td + (L− t)d.

Since L is a constant, we think of this as a function of t. Observe that the image of
the function is positive and takes the value Ld at the endpoints. Since the function is
differentiable, the minimum is either attained at the endpoints or at a critical point.
Observe that

d

dt
[td + (L− t)d] =

1

d

(
td−1 − (L− t)d−1

)
.
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At a critical point, we must have td−1 − (L − t)d−1 = 0, which implies t = L
2
. At this

value of t, we see that

m(t, L− t) =
2Ld

2d
.

Since 0 < d < 1, this is clearly larger than Ld, so we see the minima occur at (L, 0)
and (0, L), where the value of he function is Ld.

Finally consider the case when k > 2. Suppose v ∈ Rk is a global minimum for m and
that v is not of the form stated in the problem. Then there are distinct indices i and
j so that vi 6= 0 and vj 6= 0. Let ` = vi + vj. From case when k = 2, observe that

`d < vdi + vdj .

Now define the vector w ∈ Rk by

wn =


wn = ` if n = i

wn = 0 if n = j

wn = vn otherwise.

We observe that w ∈ ∆ because the sum of the entries are the same as the sum of the
entries of v and

m(v)−m(w) = vdi + vdj − `d > 0,

which contradicts our original assumption that v was a global minimum.

(d) Use the prior part to argue that Hd([0, 1]) =∞ whenever 0 < d < 1.

Solution: Suppose 0 < d < 1, and let δ > 0. Let n be the largest number so that
2nδ ≤ 1. We will show that

Hd
δ ([0, 1]) ≥ nδd. (1)

To prove the claim, let I be a countable covering of [0, 1] by open intervals of length
less than δ. For i ∈ {1, . . . , n}, let Ai = [2iδ, (2i+ 1)δ]. Define

Ii = {I ∈ I : I ∩ Ai 6= ∅}.

Observe that the Ii are pairwise disjoint, because the intervals Ai are pairwise separated
by at least δ. In particular, ∑

I∈I

|I|d ≥
n∑
i=1

∑
I∈Ii

|I|d.

Now observe that Ai is compact and Ii is an open cover. So, there is a finite subcover
Ji ⊂ Ii. Then by the prior part, we see that∑

I∈Ii

|I|d ≥
∑
J∈Ji

|J |d ≥ δd.
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Since the above inequality holds for all i, we see that∑
I∈I

|I|d ≥ nδd.

SinceHd
δ ([0, 1]) is an infimum of such quantities, we see equation 1 holds, i.e., Hd

δ ([0, 1]) ≥
nδd.

In order to conclude the proof, we need to argue that Hd
δ ([0, 1]) can be made arbitrarily

large. Then it will follow from part (a) that Hd([0, 1]) =∞. For each n ∈ N, let δn = 1
2n

(so that δn determines n as written above). Now using L’Hôpital’s rule that

lim
n→∞

n

(2n)d
= lim

n→∞

1

2(2n)d−1
= lim

n→∞

(2n)1−d

2
=∞.

Since Hd
δn

([0, 1]) ≥ n
(2n)d

, we see that Hd
δn

([0, 1]) can be made arbitrarily large by taking

δ = 1
2n

sufficiently small. Thus Hd([0, 1]) =∞ as claimed.

Final remarks on this problem: It can be shown that for any set A ⊂ R, there is a unique
0 ≤ D ≤ 1 so that

Hd(A) =∞ for 0 ≤ d < D and Hd(A) = 0 for d > D.

This number D is called the Hausdorff dimension of A. Once you do the exercises above,
you will have shown that the Hausdorff dimension of [0, 1] is 1.

If you would like a challenge, try to show that the Hausdorff dimension of the middle third
Cantor set is log 2

log 3
.
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