Math 70100: Functions of a Real Variable I Homework 8, due Wednesday, November 5.

1. (Combines Pugh's Ch. $6 \# 1$-2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=a x+b$ for some $a, b \in \mathbb{R}$. Prove that $m^{*} \circ f(A)=|a| \cdot m^{*}(A)$ for each $A \subset \mathbb{R}$, where m^{*} is the Lebesgue outer measure on \mathbb{R}.
2. Use the formula from the prior problem to show that the middle third Cantor set C satisfies $m^{*}(C)=0$, where m^{*} is Lebesgue outer measure. (Hint: Use the self-similarity.)
3. (Royden §2.2 \# 7) A set of real numbers is said to be a G_{δ} set if it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a G_{δ} set G for which $E \subset G$ and $m^{*}(G)=m^{*}(E)$.
4. Fix some real number $d \geq 0$. For a subset $A \subset \mathbb{R}$ and $\delta>0$, let

$$
H_{\delta}^{d}(A)=\inf \left\{\sum_{k}\left|I_{k}\right|^{d}\right\}
$$

where the infimum is taken over all countable covers $\left\{I_{k}\right\}$ of A by open intervals each of which has length less than δ. The d-dimensional Hausdorff outer measure of A is

$$
H^{d}(A)=\lim _{\delta \rightarrow 0} H_{\delta}^{d}(A)
$$

You can use without proof that H^{d} is an outer measure. You may also use without proof that when $d=1, H^{d}$ is the Lebesgue outer measure on \mathbb{R}.
(a) Explain why if $\delta<\delta^{\prime}$, then $H_{\delta}^{d}(A) \geq H_{\delta^{\prime}}^{d}(A)$ for every $A \subset \mathbb{R}$. (Remark: It follows that $\left.H^{d}(A)=\sup _{\delta>0} H_{\delta}^{d}(A).\right)$
(b) Show that $H^{d}([0,1])=0$ for every $d>1$.
(c) Let $L \in \mathbb{R}$ be positive, and let k be a positive integer. Let

$$
\Delta=\left\{\mathbf{v} \in \mathbb{R}^{k}: v_{i} \geq 0 \text { and } \sum_{i=1}^{k} v_{i}=L\right\}
$$

Fix a $d \in \mathbb{R}$ with $0<d<1$. Consider the function

$$
m: \Delta \rightarrow \mathbb{R} ; \quad \mathbf{v} \mapsto \sum_{i=1}^{k} v_{i}^{d}
$$

Show that this function has a unique global maximum which is attained at the vector where each $v_{i}=\frac{L}{k}$.
(d) Use the prior part to argue that $H^{d}([0,1])=\infty$ whenever $0<d<1$.

Final remarks on this problem: It can be shown that for any set $A \subset \mathbb{R}$, there is a unique $0 \leq D \leq 1$ so that

$$
H^{d}(A)=\infty \quad \text { for } 0 \leq d<D \quad \text { and } \quad H^{d}(A)=0 \quad \text { for } d>D
$$

This number D is called the Hausdorff dimension of A. Once you do the exercises above, you will have shown that the Hausdorff dimension of $[0,1]$ is 1 .
If you would like a challenge, try to show that the Hausdorff dimension of the middle third Cantor set is $\frac{\log 2}{\log 3}$.

