Math 70100: Functions of a Real Variable I Homework 8, due Wednesday, November 5.

- 1. (Combines Pugh's Ch. $6 \notin 1-2$) Let $f : \mathbb{R} \to \mathbb{R}$ be f(x) = ax + b for some $a, b \in \mathbb{R}$. Prove that $m^* \circ f(A) = |a| \cdot m^*(A)$ for each $A \subset \mathbb{R}$, where m^* is the Lebesgue outer measure on \mathbb{R} .
- 2. Use the formula from the prior problem to show that the middle third Cantor set C satisfies $m^*(C) = 0$, where m^* is Lebesgue outer measure. (*Hint:* Use the self-similarity.)
- 3. (Royden §2.2 # 7) A set of real numbers is said to be a G_{δ} set if it is the intersection of a countable collection of open sets. Show that for any bounded set E, there is a G_{δ} set G for which $E \subset G$ and $m^*(G) = m^*(E)$.
- 4. Fix some real number $d \ge 0$. For a subset $A \subset \mathbb{R}$ and $\delta > 0$, let

$$H^d_{\delta}(A) = \inf \left\{ \sum_k |I_k|^d \right\},\,$$

where the infimum is taken over all countable covers $\{I_k\}$ of A by open intervals each of which has length less than δ . The *d*-dimensional Hausdorff outer measure of A is

$$H^d(A) = \lim_{\delta \to 0} H^d_\delta(A).$$

You can use without proof that H^d is an outer measure. You may also use without proof that when d = 1, H^d is the Lebesgue outer measure on \mathbb{R} .

- (a) Explain why if $\delta < \delta'$, then $H^d_{\delta}(A) \ge H^d_{\delta'}(A)$ for every $A \subset \mathbb{R}$. (*Remark*: It follows that $H^d(A) = \sup_{\delta > 0} H^d_{\delta}(A)$.)
- (b) Show that $H^d([0,1]) = 0$ for every d > 1.
- (c) Let $L \in \mathbb{R}$ be positive, and let k be a positive integer. Let

$$\Delta = \{ \mathbf{v} \in \mathbb{R}^k : v_i \ge 0 \text{ and } \sum_{i=1}^k v_i = L \}.$$

Fix a $d \in \mathbb{R}$ with 0 < d < 1. Consider the function

$$m: \Delta \to \mathbb{R}; \quad \mathbf{v} \mapsto \sum_{i=1}^k v_i^d.$$

Show that this function has a unique global maximum which is attained at the vector where each $v_i = \frac{L}{k}$.

(d) Use the prior part to argue that $H^d([0,1]) = \infty$ whenever 0 < d < 1.

Final remarks on this problem: It can be shown that for any set $A \subset \mathbb{R}$, there is a unique $0 \leq D \leq 1$ so that

$$H^d(A) = \infty$$
 for $0 \le d < D$ and $H^d(A) = 0$ for $d > D$.

This number D is called the *Hausdorff dimension* of A. Once you do the exercises above, you will have shown that the Hausdorff dimension of [0, 1] is 1.

If you would like a challenge, try to show that the Hausdorff dimension of the middle third Cantor set is $\frac{\log 2}{\log 3}$.