Math 70100: Functions of a Real Variable I Homework 7, due Wednesday, October 22.

1. Assume that $f_n : [0,1] \to \mathbb{R}$ is a sequence of differentiable functions whose derivatives are uniformly bounded. Suppose there is an $x_0 \in [0,1]$ so that $\{f_n(x_0) : n \in \mathbb{N}\}$ is bounded. Prove that $\{f_n\}$ has a subsequence which converges uniformly to a continuous function on [0,1].

Solution: Let $\{f_n\}$ be a sequence of differentiable functions from [0, 1] to \mathbb{R} , and assume there is an M > 0 so that $|f'_n(x)| < M$ for all $x \in [0, 1]$ and that $|f_n(x_0)| < M$ for some $x_0 \in [0, 1]$.

By Arzelá-Ascoli, it suffices to prove that $\{f_n\}$ is pointwise totally bounded and equicontinuous.

First we claim that $\{f_n\}$ is equicontinuous. Let $\epsilon > 0$. We claim that $|x - y| < \frac{\epsilon}{M}$ implies $|f_n(x) - f_n(y)| < \epsilon$ for each $n \in \mathbb{N}$, which will verify the definition of equicontinuity. Suppose not. Then there is an n and an $x, y \in [0, 1]$ so that $|x - y| < \frac{\epsilon}{M}$ but $|f_n(x) - f_n(y)| \ge \epsilon$. By the mean value theorem, there is a z between x and y so that

$$|f'_n(z)| = \frac{|f_n(x) - f_n(y)|}{|x - y|} > \frac{\epsilon}{\epsilon/M} = M.$$

But this contradicts our uniform bound on the derivative. Thus, we have shown that $\{f_n\}$ is equicontinuous.

Now we claim that $\{f_n\}$ is pointwise totally bounded. Recall that in \mathbb{R} , totally bounded is the same as bounded. We claim that for each $x \in [0, 1]$, we have $|f_n(x)| < 2M$, which will verify by definition that $\{f_n\}$ is pointwise bounded. Suppose to the contrary that $|f_n(x)| \ge 2M$. Recall that $|f_n(x_0)| < M$. Therefore,

$$|f_n(x) - f_n(x_0)| > M.$$

But, then because $x, x_0 \in [0, 1]$, we have $|x - x_0| \leq 1$. Again by the mean value theorem, there is a y between x and x_0 so that

$$|f'(z)| = \frac{|f_n(x) - f_n(x_0)|}{|x - x_0|} > \frac{M}{1}.$$

Again, this contradicts our uniform bound on the derivative.

2. (Royden-Fitzpatrick §10.1 # 5) A function $f : [0,1] \to \mathbb{R}$ is said to be Hölder continuous of order α provided there is a constant C for which

$$|f(x) - f(y)| \le C|x - y|^{\alpha} \quad \text{for all} \quad x, y \in [0, 1].$$

Define the Hölder norm

$$||f||_{\alpha} = \max \{|f(x)| + \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} : x, y \in [0, 1] \text{ and } x \neq y\}.$$

Show that for $0 < \alpha < 1$, the set of functions for which $||f||_{\alpha} \leq 1$ has compact closure as a subset of subset of the space of continuous real-valued functions on [0, 1] with the uniform norm.

Solution: Fix some $\alpha \in (0,1)$. By the Arzelá-Ascoli theorem, it suffices to show that the set \mathcal{F} of functions $f : [0,1] \to \mathbb{R}$ with $||f||_{\alpha} \leq 1$ is pointwise totally bounded and equicontinuous.

Since the functions \mathcal{F} map to \mathbb{R} , it suffices to show the functions are pointwise bounded. We claim that $|f(x)| \leq 1$ for each $x \in [0, 1]$ and each $f \in \mathcal{F}$. Observe that by definition of the Hölder norm, for each $x \in [0, 1]$ and each $f \in \mathcal{F}$, we have

 $|f(x)| \le ||f||_{\alpha} \le 1,$

so 1 serves as a uniform pointwise bound.

We claim that \mathcal{F} is equicontinuous. Fix an $\epsilon > 0$ an $x \in [0, 1]$. We claim that for each $\epsilon > 0$ and each y with $|x - y| < \epsilon$ and each $f \in \mathcal{F}$, we have

$$|f(x) - f(y)| < \epsilon^{\alpha}.$$

Fix such an ϵ , y and f. If x = y, then it is trivially true. Otherwise, observe by definition of the Hölder norm, we have

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le 1.$$

Thus,

$$|f(x) - f(y)| \le |x - y|^{\alpha} < \epsilon^{\alpha},$$

as claimed.

3. (Lang §III.4 #21) Let X be a metric space and E be a normed vector space. Let BC(X, E) be the space of bounded continuous maps $X \to E$ (with the uniform norm). Let Φ be a bounded subset of BC(X, E). For $x \in X$, let $ev_x : \Phi \to E$ be the function $ev_x(\phi) = \phi(x)$. Show that ev_x is continuous and bounded. Show that Φ is equicontinuous at a point $a \in X$ if and only if the map $x \mapsto ev_x$ of X into $BC(\Phi, E)$ is continuous at a.

Solution: Fix Φ to be a bounded subset of BC(X, E) as stated. We let $\|\cdot\|$ be the uniform norms on both BC(X, E) and $BC(\Phi, E)$, and let $|\cdot|$ be the norm on E. The statement that Φ is bounded then gives an M > 0 so that $\phi(x) < M$ for each $\phi \in \Phi$ and each $x \in X$.

Consider the map $\operatorname{ev}_x : \Phi \to E$ as described in the problem. We claim this map is continuous and bounded. It is clearly bounded since $\phi(x) < M$ for each $\phi \in \Phi$. This is a map between metric spaces, so we will use the ϵ - δ definition of continuity to show ev_x is continuous at each point $\phi \in \Phi$. Fix some $\epsilon > 0$. We claim that for each $\psi \in \Phi$, we have $\|\phi - \psi\| < \epsilon$ implies $|\operatorname{ev}_x(\phi) - \operatorname{ev}_x(\psi)| < \epsilon$. Indeed, suppose $\|\phi - \psi\| < \epsilon$. Then by definition of the uniform norm, $|\phi(x) - \psi(x)| < \epsilon$. But this is the same as the statement that $|ev_x(\phi) - ev_x(\psi)| < \epsilon$ by definition of ev_x .

Now we will show that ev_x is continuous and bounded. Show that Φ is equicontinuous at a point $a \in X$ if and only if the map $x \mapsto ev_x$ of X into $BC(\Phi, E)$ is continuous at a. Fix $a \in X$. Observe that the following statements are all equivalent. (Justifications for each step are given in parenthesis.)

- The map $x \mapsto ev_x$ of X into $BC(\Phi, E)$ is continuous at a.
- For each $\epsilon > 0$, there is a $\delta > 0$ so that $d(x, a) < \delta$ implies $\|ev_x ev_a\| < \epsilon$. (Metric definition of continuity.)
- For each $\epsilon > 0$, there is a $\delta > 0$ so that $d(x, a) < \delta$ and $\phi \in \Phi$ implies $|ev_x(\phi) ev_a(\phi)| < \epsilon$. (Definition of uniform norm.)
- For each $\epsilon > 0$, there is a $\delta > 0$ so that $d(x, a) < \delta$ and $\phi \in \Phi$ implies $|\phi(x) \phi(a)| < \epsilon$. (Definition of ev_* .)
- Φ is equicontinuous at point *a*. (*Definition of equicontinuity*.)
- 4. (Rudin's Principles of real analysis, Chapter 7 # 20) Prove that if $f : [0, 1] \to \mathbb{R}$ is continuous and if

$$\int_0^1 f(x)x^n \, dx = 0$$

for all integers $n \ge 0$, then f is identically zero on [0, 1]. (*Hint:* This is a standard application of the Stone-Weierstrass Theorem or even just Weierstrass's theorem.)

Solution: Suppose to the contrary that f is not identically zero but that $\int_0^1 f(x)x^n dx = 0$ for every integer $n \ge 0$. Let

$$I = \int_0^1 f(x)^2 \, dx,$$

which is positive since f is not identically zero. Choose M > 0 so that |f(x)| < M for each $x \in [0, 1]$, which exists by compactness of [0, 1]. Recall by Weierstrass's theorem that polynomials are uniformly dense in C([0, 1]), the space of continuous functions from [0, 1] to \mathbb{R} . Thus, there is a polynomial p(x) so that

$$|f(x) - p(x)| < \frac{I}{2M} \quad \text{for all } x \in [0, 1].$$

Then we see that

$$\left| \int_{0}^{1} f(x) \left(f(x) - p(x) \right) \, dx \right| \le \int_{0}^{1} |f(x)| \left| f(x) - p(x) \right| \, dx \le \int_{0}^{1} M \frac{I}{2M} \, dx = \frac{I}{2}.$$
(1)

On the other hand, by linearity of the integral, we see

$$\int_0^1 f(x)p(x) \ dx = 0$$

So, we compute

$$\left| \int_0^1 f(x) \left(f(x) - p(x) \right) \, dx \right| = \left| \int_0^1 f(x)^2 \, dx - \int_0^1 f(x) p(x) \, dx \right| = |I - 0| = I.$$

But since $I \neq 0$, this contradicts equation (1).

5. (Kriz and Pultr § 9.7 # 8) Prove that any open set in \mathbb{R}^n is σ -compact.

Solution: Let $U \subset \mathbb{R}^n$ be an open set. For $\mathbf{x} \in \mathbb{R}^n$, let $B_{\epsilon}(\mathbf{x}) \subset \mathbb{R}^n$ denote the open ball of radius ϵ centered at \mathbf{x} . For each integer $m \geq 1$, define the subset

$$K_m = \{ \mathbf{x} \in U : |\mathbf{x}| \le m \text{ and } B_{1/m}(\mathbf{x}) \subset U \}.$$

We claim K_m is compact. Since $K_m \subset \mathbb{R}^n$, it suffices to prove that K_m is a closed and bounded subset of \mathbb{R}^n . Clearly K_m is a bounded set, since $|\mathbf{x}| \leq m$. We claim it is also closed. Suppose $\mathbf{x}_k \in K_m$ converges to $\mathbf{x} \in \mathbb{R}^m$. We claim $\mathbf{x} \in K_m$. Observe $|\mathbf{x}_k| \leq m$ for each k, and by continuity of $|\cdot|$, we have

$$|\mathbf{x}| = \lim_{k \to \infty} |\mathbf{x}_k| \le m.$$

It remains to show $B_{1/m}(\mathbf{x}) \subset U$. Choose a $\mathbf{y} \in B_{1/m}(\mathbf{x})$. Again by continuity of $|\cdot|$, we have

$$\frac{1}{m} > |\mathbf{x} - \mathbf{y}| = \lim_{k \to \infty} |\mathbf{x}_k - \mathbf{y}|.$$

So, we can find a k so that $|\mathbf{x}_k - \mathbf{y}| < \frac{1}{m}$. For this k,

 $\mathbf{y} \in B_{1/m}(\mathbf{x}_k) \subset U.$

Since $\mathbf{y} \in B_{1/m}(\mathbf{x})$ was arbitrary, this shows $B_{1/m}(\mathbf{x}) \subset U$. Thus $\mathbf{x} \in K_m$.

We have shown each K_m is compact. So, to show U is σ -compact, it suffices to show that $U = \bigcup_m K_m$. By definition $K_m \subset U$, so the union is also a subset of U. To see the opposite inclusion, choose an $\mathbf{x} \in U$. Since U is open, there is an ϵ so that $B_{\epsilon}(\mathbf{x}) \subset U$. Choose an integer M so that

$$M > \max \left(|\mathbf{x}|, \frac{1}{\epsilon} \right).$$

Then, $|\mathbf{x}| < M$ and $B_{1/M}(\mathbf{x}) \subset B_{\epsilon}(\mathbf{x}) \subset U$. So by definition, $\mathbf{x} \in K_M$.