
Math 70100: Functions of a Real Variable I
Homework 7, due Wednesday, October 22.

1. Assume that fn : [0, 1] → R is a sequence of differentiable functions whose derivatives are
uniformly bounded. Suppose there is an x0 ∈ [0, 1] so that {fn(x0) : n ∈ N} is bounded.
Prove that {fn} has a subsequence which converges uniformly to a continuous function on
[0, 1].

Solution: Let {fn} be a sequence of differentiable functions from [0, 1] to R, and assume
there is an M > 0 so that |f ′n(x)| < M for all x ∈ [0, 1] and that |fn(x0)| < M for some
x0 ∈ [0, 1].

By Arzelá-Ascoli, it suffices to prove that {fn} is pointwise totally bounded and equicon-
tinuous.

First we claim that {fn} is equicontinuous. Let ε > 0. We claim that |x − y| < ε
M

implies
|fn(x)−fn(y)| < ε for each n ∈ N, which will verify the definition of equicontinuity. Suppose
not. Then there is an n and an x, y ∈ [0, 1] so that |x− y| < ε

M
but |fn(x)− fn(y)| ≥ ε. By

the mean value theorem, there is a z between x and y so that

|f ′n(z)| = |fn(x)− fn(y)|
|x− y|

>
ε

ε/M
= M.

But this contradicts our uniform bound on the derivative. Thus, we have shown that {fn}
is equicontinuous.

Now we claim that {fn} is pointwise totally bounded. Recall that in R, totally bounded
is the same as bounded. We claim that for each x ∈ [0, 1], we have |fn(x)| < 2M , which
will verify by definition that {fn} is pointwise bounded. Suppose to the contrary that
|fn(x)| ≥ 2M . Recall that |fn(x0)| < M . Therefore,

|fn(x)− fn(x0)| > M.

But, then because x, x0 ∈ [0, 1], we have |x − x0| ≤ 1. Again by the mean value theorem,
there is a y between x and x0 so that

|f ′(z)| = |fn(x)− fn(x0)|
|x− x0|

>
M

1
.

Again, this contradicts our uniform bound on the derivative.

2. (Royden-Fitzpatrick §10.1 # 5) A function f : [0, 1] → R is said to be Hölder continuous of
order α provided there is a constant C for which

|f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ [0, 1].

Define the Hölder norm

‖f‖α = max {|f(x)|+ |f(x)− f(y)|
|x− y|α

: x, y ∈ [0, 1] and x 6= y}.



Show that for 0 < α < 1, the set of functions for which ‖f‖α ≤ 1 has compact closure as
a subset of subset of the space of continuous real-valued functions on [0, 1] with the uniform
norm.

Solution: Fix some α ∈ (0, 1). By the Arzelá-Ascoli theorem, it suffices to show that
the set F of functions f : [0, 1] → R with ‖f‖α ≤ 1 is pointwise totally bounded and
equicontinuous.

Since the functions F map to R, it suffices to show the functions are pointwise bounded.
We claim that |f(x)| ≤ 1 for each x ∈ [0, 1] and each f ∈ F . Observe that by definition of
the Hölder norm, for each x ∈ [0, 1] and each f ∈ F , we have

|f(x)| ≤ ‖f‖α ≤ 1,

so 1 serves as a uniform pointwise bound.

We claim that F is equicontinuous. Fix an ε > 0 an x ∈ [0, 1]. We claim that for each ε > 0
and each y with |x− y| < ε and each f ∈ F , we have

|f(x)− f(y)| < εα.

Fix such an ε, y and f . If x = y, then it is trivially true. Otherwise, observe by definition
of the Hölder norm, we have

|f(x)− f(y)|
|x− y|α

≤ 1.

Thus,
|f(x)− f(y)| ≤ |x− y|α < εα,

as claimed.

3. (Lang §III.4 #21) Let X be a metric space and E be a normed vector space. Let BC(X,E) be
the space of bounded continuous maps X → E (with the uniform norm). Let Φ be a bounded
subset of BC(X,E). For x ∈ X, let evx : Φ → E be the function evx(φ) = φ(x). Show that
evx is continuous and bounded. Show that Φ is equicontinuous at a point a ∈ X if and only if
the map x 7→ evx of X into BC(Φ, E) is continuous at a.

Solution: Fix Φ to be a bounded subset of BC(X,E) as stated. We let ‖·‖ be the uniform
norms on both BC(X,E) and BC(Φ, E), and let | · | be the norm on E. The statement
that Φ is bounded then gives an M > 0 so that φ(x) < M for each φ ∈ Φ and each x ∈ X.

Consider the map evx : Φ→ E as described in the problem. We claim this map is continuous
and bounded. It is clearly bounded since φ(x) < M for each φ ∈ Φ. This is a map between
metric spaces, so we will use the ε-δ definition of continuity to show evx is continuous at each
point φ ∈ Φ. Fix some ε > 0. We claim that for each ψ ∈ Φ, we have ‖φ− ψ‖ < ε implies
|evx(φ) − evx(ψ)| < ε. Indeed, suppose ‖φ − ψ‖ < ε. Then by definition of the uniform
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norm, |φ(x) − ψ(x)| < ε. But this is the same as the statement that |evx(φ) − evx(ψ)| < ε
by definition of evx.

Now we will show that evx is continuous and bounded. Show that Φ is equicontinuous at
a point a ∈ X if and only if the map x 7→ evx of X into BC(Φ, E) is continuous at a. Fix
a ∈ X. Observe that the following statements are all equivalent. (Justifications for each
step are given in parenthesis.)

• The map x 7→ evx of X into BC(Φ, E) is continuous at a.

• For each ε > 0, there is a δ > 0 so that d(x, a) < δ implies ‖evx − eva‖ < ε. (Metric
definition of continuity.)

• For each ε > 0, there is a δ > 0 so that d(x, a) < δ and φ ∈ Φ implies |evx(φ)−eva(φ)| <
ε. (Definition of uniform norm.)

• For each ε > 0, there is a δ > 0 so that d(x, a) < δ and φ ∈ Φ implies |φ(x)−φ(a)| < ε.
(Definition of ev∗.)

• Φ is equicontinuous at point a. (Definition of equicontinuity.)

4. (Rudin’s Principles of real analysis, Chapter 7 # 20) Prove that if f : [0, 1]→ R is continuous
and if ∫ 1

0

f(x)xn dx = 0

for all integers n ≥ 0, then f is identically zero on [0, 1]. (Hint: This is a standard application
of the Stone-Weierstrass Theorem or even just Weierstrass’s theorem.)

Solution: Suppose to the contrary that f is not identically zero but that
∫ 1

0
f(x)xn dx = 0

for every integer n ≥ 0. Let

I =

∫ 1

0

f(x)2 dx,

which is positive since f is not identically zero. Choose M > 0 so that |f(x)| < M for
each x ∈ [0, 1], which exists by compactness of [0, 1]. Recall by Weierstrass’s theorem that
polynomials are uniformly dense in C([0, 1]), the space of continuous functions from [0, 1]
to R. Thus, there is a polynomial p(x) so that

|f(x)− p(x)| < I

2M
for all x ∈ [0, 1].

Then we see that∣∣∣∣∫ 1

0

f(x)
(
f(x)− p(x)

)
dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)|
∣∣f(x)− p(x)

∣∣ dx ≤ ∫ 1

0

M
I

2M
dx =

I

2
. (1)

On the other hand, by linearity of the integral, we see∫ 1

0

f(x)p(x) dx = 0.
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So, we compute∣∣∣∣∫ 1

0

f(x)
(
f(x)− p(x)

)
dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

f(x)2 dx−
∫ 1

0

f(x)p(x) dx

∣∣∣∣ = |I − 0| = I.

But since I 6= 0, this contradicts equation (1).

5. (Kriz and Pultr §9.7 # 8) Prove that any open set in Rn is σ-compact.

Solution: Let U ⊂ Rn be an open set. For x ∈ Rn, let Bε(x) ⊂ Rn denote the open ball
of radius ε centered at x. For each integer m ≥ 1, define the subset

Km = {x ∈ U : |x| ≤ m and B1/m(x) ⊂ U}.

We claim Km is compact. Since Km ⊂ Rn, it suffices to prove that Km is a closed and
bounded subset of Rn. Clearly Km is a bounded set, since |x| ≤ m. We claim it is also
closed. Suppose xk ∈ Km converges to x ∈ Rm. We claim x ∈ Km. Observe |xk| ≤ m for
each k, and by continuity of | · |, we have

|x| = lim
k→∞
|xk| ≤ m.

It remains to show B1/m(x) ⊂ U . Choose a y ∈ B1/m(x). Again by continuity of | · |, we
have

1

m
> |x− y| = lim

k→∞
|xk − y|.

So, we can find a k so that |xk − y| < 1
m

. For this k,

y ∈ B1/m(xk) ⊂ U.

Since y ∈ B1/m(x) was arbitrary, this shows B1/m(x) ⊂ U . Thus x ∈ Km.

We have shown each Km is compact. So, to show U is σ-compact, it suffices to show that
U =

⋃
mKm. By definition Km ⊂ U , so the union is also a subset of U . To see the opposite

inclusion, choose an x ∈ U . Since U is open, there is an ε so that Bε(x) ⊂ U . Choose an
integer M so that

M > max
(
|x|, 1

ε

)
.

Then, |x| < M and B1/M(x) ⊂ Bε(x) ⊂ U. So by definition, x ∈ KM .
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