Math 70100: Functions of a Real Variable |
Homework 7, due Wednesday, October 22.

1. Assume that f, : [0,1] — R is a sequence of differentiable functions whose derivatives are
uniformly bounded. Suppose there is an zy € [0,1] so that {f,(zo) : n € N} is bounded.
Prove that {f,} has a subsequence which converges uniformly to a continuous function on
[0,1].

Solution: Let {f,} be a sequence of differentiable functions from [0, 1] to R, and assume
there is an M > 0 so that |f/(z)] < M for all z € [0,1] and that |f,(x¢)| < M for some
Ty € [0, 1]

By Arzeld-Ascoli, it suffices to prove that {f,} is pointwise totally bounded and equicon-
tinuous.

First we claim that {f,} is equicontinuous. Let ¢ > 0. We claim that |z —y| < ;7 implies
| fu(x)— fu(y)| < € for each n € N, which will verify the definition of equicontinuity. Suppose
not. Then there is an n and an ,y € [0, 1] so that |z —y| < 57 but |f,(x) — fu(y)| > €. By
the mean value theorem, there is a z between x and y so that
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But this contradicts our uniform bound on the derivative. Thus, we have shown that {f,}
is equicontinuous.

Now we claim that {f,} is pointwise totally bounded. Recall that in R, totally bounded
is the same as bounded. We claim that for each x € [0,1], we have |f,(z)| < 2M, which

will verify by definition that {f,} is pointwise bounded. Suppose to the contrary that
|fu(x)] > 2M. Recall that |f,(zo)| < M. Therefore,

|fn(x) - fn(l’o)| > M.

But, then because x,xy € [0,1], we have |x — xo| < 1. Again by the mean value theorem,
there is a y between x and x( so that

e = ool _ M
|z — o 1

(2]

Again, this contradicts our uniform bound on the derivative.

2. (Royden-Fitzpatrick §10.1 # 5) A function f : [0,1] — R is said to be Hélder continuous of
order « provided there is a constant C' for which

(@) = F@) < Cla—gl* forall z,y € [0,1]
Define the Holder norm

11l = max {|f(z)] + L& =W

s x,y €10,1] and z # y}.
[z —yl*



Show that for 0 < a < 1, the set of functions for which || f]|, < 1 has compact closure as
a subset of subset of the space of continuous real-valued functions on [0, 1] with the uniform
norm.

). By the Arzela-Ascoli theorem, it suffices to show that
| = R with [|f]|» < 1 is pointwise totally bounded and

Solution: Fix some «a € (0,
the set F of functions f : [0,
equicontinuous.

1
1

Since the functions F map to R, it suffices to show the functions are pointwise bounded.
We claim that |f(z)| <1 for each x € [0, 1] and each f € F. Observe that by definition of
the Holder norm, for each x € [0,1] and each f € F, we have

[f@)] < [[flla <1,
so 1 serves as a uniform pointwise bound.

We claim that F is equicontinuous. Fix an e > 0 an z € [0, 1]. We claim that for each € > 0
and each y with |x — y| < € and each f € F, we have

[f (@) = fy)] < e

Fix such an €, y and f. If x = y, then it is trivially true. Otherwise, observe by definition
of the Holder norm, we have
@ -

lz -yl —

Thus,
|f(x) = f(y)] < |z —y|* <€,

as claimed.

3. (Lang §111.4 #21) Let X be a metric space and F be a normed vector space. Let BC'(X, E) be
the space of bounded continuous maps X — F (with the uniform norm). Let ® be a bounded
subset of BC(X, E). For z € X, let ev, : ® — FE be the function ev,(¢) = ¢(z). Show that
ev, is continuous and bounded. Show that ® is equicontinuous at a point a € X if and only if
the map = +— ev, of X into BC(®, F) is continuous at a.

Solution: Fix ® to be a bounded subset of BC(X, E) as stated. We let ||-|| be the uniform
norms on both BC(X, E) and BC(®, E), and let | - | be the norm on E. The statement
that ® is bounded then gives an M > 0 so that ¢(z) < M for each ¢ € ® and each z € X.

Consider the map ev,, : ® — FE as described in the problem. We claim this map is continuous
and bounded. Tt is clearly bounded since ¢(x) < M for each ¢ € ®. This is a map between
metric spaces, so we will use the e-9 definition of continuity to show ev, is continuous at each
point ¢ € ®. Fix some € > 0. We claim that for each ¢ € ®, we have ||¢ — 1| < € implies
levi () — ev,(¥)| < e. Indeed, suppose ||¢ — ©|| < e. Then by definition of the uniform
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norm, |¢(x) — ()| < e. But this is the same as the statement that |ev,(¢) — ev, ()| < €
by definition of ev,.

Now we will show that ev, is continuous and bounded. Show that ® is equicontinuous at
a point a € X if and only if the map = +— ev, of X into BC(®, F) is continuous at a. Fix
a € X. Observe that the following statements are all equivalent. (Justifications for each
step are given in parenthesis.)

e The map x — ev, of X into BC(®, E) is continuous at a.

For each € > 0, there is a § > 0 so that d(x,a) < ¢ implies ||ev, — ev,|| < e. (Metric
definition of continuity.)

For each € > 0, thereisa d > 0so that d(z,a) < § and ¢ € ® implies |ev,(¢)—ev,(d)] <
e. (Definition of uniform norm.)

For each € > 0, thereis a 0 > 0 so that d(z,a) < § and ¢ € ¢ implies |p(x) —p(a)| < €.
(Definition of euv,.)

e & is equicontinuous at point a. (Definition of equicontinuity.)

4. (Rudin’s Principles of real analysis, Chapter 7 # 20) Prove that if f :[0,1] — R is continuous
and if

/O1 fx)2" dz =0

for all integers n > 0, then f is identically zero on [0, 1]. (Hint: This is a standard application
of the Stone-Weierstrass Theorem or even just Weierstrass’s theorem.)

Solution: Suppose to the contrary that f is not identically zero but that fol flz)z" dx =0
for every integer n > 0. Let

= /0 () d,

which is positive since f is not identically zero. Choose M > 0 so that |f(x)] < M for
each z € [0, 1], which exists by compactness of [0,1]. Recall by Weierstrass’s theorem that
polynomials are uniformly dense in C(]0, 1]), the space of continuous functions from [0, 1]
to R. Thus, there is a polynomial p(z) so that

|f(z) = p(z)] < ﬁ for all z € [0,1].
Then we see that
| @)@ =p@) de| < [ 1@l @) <p)| do < [ Mpyae=g )

On the other hand, by linearity of the integral, we see

/ faple) da =0,
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So, we compute

/0 f(@)(f(z) - pla) de| = / f(2)? du — / f@)p(x) de| = |1 —0| = 1.

But since I # 0, this contradicts equation .

5. (Kriz and Pultr §9.7 # 8) Prove that any open set in R" is o-compact.

Solution: Let U C R” be an open set. For x € R", let B.(x) C R™ denote the open ball
of radius € centered at x. For each integer m > 1, define the subset

Kn={xeU : |x| <mand By,(x) C U}

We claim K, is compact. Since K,, C R", it suffices to prove that K,, is a closed and
bounded subset of R™. Clearly K, is a bounded set, since |[x| < m. We claim it is also
closed. Suppose x;, € K, converges to x € R™. We claim x € K,,. Observe |x;| < m for
each k, and by continuity of | - |, we have

x| = lim |xx| < m.
k—o0

It remains to show By, (x) C U. Choose a 'y € By, (x). Again by continuity of | - |, we

have
1 .
— > |x—y| = lim |x; —y]|.
m k—o0

So, we can find a k so that |x; —y| < =. For this £,
y € Bl/m(xk) cU.
Since y € Bim(x) was arbitrary, this shows By/,(x) C U. Thus x € K,,.

We have shown each K,, is compact. So, to show U is o-compact, it suffices to show that
U =,, Kn. By definition K,,, C U, so the union is also a subset of U. To see the opposite
inclusion, choose an x € U. Since U is open, there is an € so that B.(x) C U. Choose an
integer M so that

M > max (|x[,%)

Then, |x| < M and Bju(x) C Be(x) C U. So by definition, x € K.
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