Math 70100: Functions of a Real Variable I Homework 7, due Wednesday, October 22.

- 1. Assume that $f_n : [0,1] \to \mathbb{R}$ is a sequence of differentiable functions whose derivatives are uniformly bounded. Suppose there is an $x_0 \in [0,1]$ so that $\{f_n(x_0) : n \in \mathbb{N}\}$ is bounded. Prove that $\{f_n\}$ has a subsequence which converges uniformly to a continuous function on [0,1].
- 2. (Royden-Fitzpatrick §10.1 # 5) A function $f : [0,1] \to \mathbb{R}$ is said to be Hölder continuous of order α provided there is a constant C for which

$$|f(x) - f(y)| \le C|x - y|^{\alpha} \quad \text{for all} x, y \text{ in}[0, 1].$$

Define the Hölder norm

$$||f||_{\alpha} = \max \{ |f(x)| + \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} : x, y \in [0, 1] \text{ and } x \neq y \}.$$

Show that for $0 < \alpha < 1$, the set of functions for which $||f||_{\alpha} \leq 1$ has compact closure as a subset of subset of the space of continuous real-valued functions on [0, 1] with the uniform norm.

- 3. (Lang §III.4 #21) Let X be a metric space and E be a normed vector space. Let BC(X, E) be the space of bounded continuous maps $X \to E$ (with the uniform norm). Let Φ be a bounded subset of BC(X, E). For $x \in X$, let $ev_x : \Phi \to E$ be the function $ev_x(\phi) = \phi(x)$. Show that ev_x is continuous and bounded. Show that Φ is equicontinuous at a point $a \in X$ if and only if the map $x \mapsto ev_x$ of X into $BC(\Phi, E)$ is continuous at a.
- 4. (Rudin's Principles of real analysis, Chapter 7 # 20) Prove that if $f : [0, 1] \to \mathbb{R}$ is continuous and if

$$\int_0^1 f(x)x^n \, dx = 0$$

for all integers $n \ge 0$, then f is identically zero on [0, 1]. (*Hint:* This is a standard application of the Stone-Weierstrass Theorem or even just Weierstrass's theorem.)

5. (Kriz and Pultr § 9.7 # 8) Prove that any open set in \mathbb{R}^n is σ -compact.