
Math 70100: Functions of a Real Variable I
Homework 6, due Wednesday, October 15.

1. (Royden-Fitzpatrick §10.2 #) A point p in a topological space is called isolated if {p} is open.
Show that a complete metric space without isolated points is uncountable. (Hint: Use Baire’s
Theorem.)

Solution: Suppose to the contrary that X is a compete metric space which is countable
and has no isolated points. By countability, we can write X =

⋃
i∈I{xi} for some countable

indexing set I. Observe that each {xi} is closed because we are in a metric space. Since X
is complete and we have written X as a countable union of closed sets, the Baire Category
theorem guarantees that some {xi} must have interior. That is, there is an i ∈ I and a
non-empty open subset A ⊂ {xi}. But since A is non-empty, we must have A = {xi} and
we conclude that {xi} is open. But then xi is isolated, which is a contradiction.

2. Prove the following variant of the Baire Category theorem:
Suppose that X is a locally-compact Hausdorff space. Prove that if X =

⋃∞
n=1Cn, where each

Cn is closed, then some Cn has non-empty interior.
(Hint: Recall that a compact Hausdorff space is normal. Mimic the proof of the Baire Category
theorem using open sets with compact closure obtained by normality rather than balls. You
will need to use the finite intersection property, which characterizes compact sets.)

Solution: Suppose X is a locally-compact Hausdorff space. Let {Cn : n ∈ N} be a
collection of closed sets. Assume no Cn has interior. We will show that X 6=

⋃∞
n=1Cn.

We will need the following:
Claim: If U is non-empty open, then for any n ∈ N there is a non-empty open set V with
compact closure V̄ ⊂ U r Cn.
Proof of claim: Fix n ∈ N and U open. Since Cn has no interior, we know U 6⊂ Cn. So, we
can find an x ∈ U rCn. Now choose a compact neighborhood K of x. Since K is Hausdorff
and compact, it is normal. The set {x} is closed because X is Hausdorff. Observe that the
closed sets ∂K, K r U and K ∩ Cn are all disjoint from {x}, so by normality, we can find
an open subset V ⊂ K containing x whose closure is disjoint from ∂K, K r U and Cn. In
particular, then

V̄ ⊂ (K ∩ U) r Cn,

and V̄ is compact because it is a closed subset of K. This proves the claim.

Now we inductively define a sequence of open sets with compact closures V̄n so that V̄n ⊂
Vn−1 for each n ≥ 1, and so that each V̄n is disjoint from Cn. To do this, first observe that
X is open, so by the claim there is an open V1 with compact closure V̄1 so that V̄1 ∩C1 = ∅.
Now suppose that Vn is defined. Then, by the claim there is an open set Vn+1 so that
V̄n+1 ⊂ Vn r Cn+1.

We have defined a nested sequence of compact sets {V̄n}. We claim the intersection is
non-empty. Observe that because these sets are nested, they satisfy the finite intersection



property. (Concretely,
k⋂

i=1

V̄nk
⊃ V̄max{n1,...,nk}.)

Then, by compactness of V̄1, the intersection
⋂

n∈N V̄n is non-empty. (This is the property
that any collection of closed sets in a compact set with the finite intersection property has
the “grand” intersection property; see Proposition 3.1 of Lang’s chapter II.) Let x be a point
in this intersection. Observe that each Vn is disjoint from Cn, so x 6∈

⋃
nCn. We conclude⋃

nCn 6= X as desired.

3. (based on Lang III§4 #9) We say a sequence {fn} of real valued functions on a topological
space X is monotone increasing if for each x ∈ X and each n ∈ N, fn+1(x) ≥ fn(x). Recall
{fn} converges to f pointwise if for each x ∈ X, we have limn→∞ fn(x) = f(x).

Prove Dini’s theorem:
If {fn} is a monotone increasing sequence of continuous real-valued functions on a compact
set metric space X which converges pointwise to a continuous function f : X → R, then the
sequence converges uniformly.

Solution: Solution 1. Fix some ε > 0. We will show that there is an N so that n > N
implies

sup
x∈X
|f(x)− fn(x)| < ε,

which verifies the definition of uniform convergence. Note by continuity and compactness,
the supremum is realized, so it suffices to show that |f(x)− fn(x)| < ε for every x ∈ X and
n > N .

Set gn(x) = f(x)− fn(x). Observe that gn is continuous, non-negative, and for each x, the
sequence {gn(x) : n ∈ N} decreases monotonically and converges to zero. Set

Un = {x ∈ X : gn(x) < ε}.

Then because gn+1(x) ≤ gn(x) for all x ∈ X, we have Un ⊂ Un+1. Also because Un =
g−1n

(
(−∞, ε)

)
, we know Un is open. Furthermore, for each x, we know gn(x) → 0 as

n→∞, so each x lies in some Un. That is,
⋃

n Un = X. Then, because X is compact, there
is a finite list {n1, . . . , nk} so that

X =
k⋃

i=1

Uni
.

Let N = max{n1, . . . , nk}. Then Uni
⊂ UN for each i ∈ {1, . . . , k}, and we conclude that

X = UN . Then if n > N , for every x ∈ X we have x ∈ UN and hence

|f(x)− fn(x)| = gn(x) ≤ gN(x) < ε.

This concludes the proof by the remarks in the first paragraph of the proof.
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Solution 2. We utilize Arzelà-Ascoli to obtain the uniform convergence. The sequence
{fn} is pointwise bounded because each x ∈ X and each n ∈ N satisfies

f1(x) ≤ fn(x) ≤ f(x).

Now we will show that fn is equicontinuous at each x ∈ X. Pick x ∈ X and ε > 0. We must
show that there is a δ so that d(x, y) < δ and n ∈ N implies |fn(y)− fn(x)| < ε. Since x is
fixed and fn(x)→ f(x) monotonically from below as n→∞, there is an N ∈ N so that

|f(x)− fN(x)| = f(x)− fN(x) <
ε

2
.

Since {f} ∪ {fi : i ≤ N} is a finite collection of continuous functions, there is a δ > 0 so
that for each y ∈ X with d(x, y) < δ and each i ≤ N , we have

|f(x)− f(y)| < ε

2
and |fi(x)− fi(y)| < ε

2
.

We claim that d(x, y) < δ and n ∈ N implies |fn(y)− fn(x)| < ε. This is true by definition
of δ if n ≤ N . Now assume n > N and d(x, y) < δ. Then,

fN(x) ≤ fn(x) ≤ f(x) and fN(y) ≤ fn(y) ≤ f(y).

It follows that
fN(y)− f(x) ≤ fn(y)− fn(x) ≤ f(y)− fN(x). (1)

Observe that:

|f(y)− fN(x)| ≤ |f(y)− f(x)|+ |f(x)− fN(x)| < ε

2
+
ε

2
= ε.

|fN(y)− f(x)| ≤ |fN(y)− fN(x)|+ |fN(x)− f(x)| < ε

2
+
ε

2
= ε.

Then by equation 1, we have

|fn(y)− fn(x)| ≤ max
(
|fN(y)− f(x)|, |f(y)− fN(x)|

)
< ε,

verifying equicontinuity.

Since {fn} is pointwise bounded and equicontinuous, the Arzelà-Ascoli theorem tells us that
there is a subsequence fnj

which converges uniformly. Since this subsequence converges
pointwise to f , the uniform limit of fnj

must be f . Now we claim that fn → f uniformly.
This essentially follows from the fact that for each x ∈ X, n < m implies fn(x) ≤ fm(x) ≤
f(x). In particular, n < m implies

‖fm − f‖ ≤ ‖fn − f‖,

where ‖ ·‖ denotes the uniform norm. Therefore, because ‖fnj
−f‖ → 0 as j →∞, we have

‖fn − f‖ → 0 as n → ∞, which concludes the proof. (Explanation: To see ‖fn − f‖ → 0,
let ε > 0. Since ‖fnj

− f‖ → 0, there is a J so that j ≥ J implies ‖fnj
− f‖ < ε. Then for

n > nJ , we have ‖fn − f‖ ≤ ‖fnJ
− f‖ ≤ ε.)
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