Math 70100: Functions of a Real Variable |
Homework 5, due Wednesday, October 8.

Name: Insert your name here.

1. (Folland 4.7.68) For a space X, let C'(X) denote the continuous functions from X to R equipped
with the uniform norm. Let X and Y be compact Hausdorff spaces. Show that the algebra
generated by functions of the form f(z,y) = g(z)h(y), where g € C'(X) and h € C(Y) is dense
inside of C'(X x Y).

Solution: Let A denote the algebra of functions on X x Y generated by functions of the
form

g-h:(x,y)— g(x)h(y),

where g € C'(X) and h € C(Y). To show A is dense in C(X x Y'), we will apply the Stone-
Weierstrass theorem. We will now check the hypotheses for this theorem. First observe that
the product of two compact spaces is compact. Second, observe that A is vanishes nowhere
because product of two non-zero constant functions lies in A. Now we will show that A
separates points. Let (x1,y1), € (22,y2) be distinct. Then 1 # x5 or y; # yo. Without
loss of generality, assume 1 # 5. Since X is Hausdorff, the sets {z1} and {3} are closed.
Recall that because X is Hausdorff and compact, it is normal. So, by Urysohn’s Lemma, we
can find a continuous function g : X — R so that g(x;) =0 and g(x9) = 1. Let h: Y - R
be the constant function h(y) = 1. Then,

g h(mlayl) = g<x1)h(yl) =0-1=0 and g- h(332,y2) = 9(%’2)h(y2) =1-1=1,

showing that A separates points. Since X X Y is compact and A separates points and
vanishes nowhere, by the Stone-Weierstrass theorem, A is dense in X x Y.

2. (Folland 4.7.69) Let A be a nonempty set, and let X = [0, 1]4. Show that the algebra generated
by the coordinate maps 7, : X — [0, 1] and the constant function 1 is dense in C'(X).

Solution: Recall that X is compact by Tychonoff’s theorem. Let A denote the algebra
generated by the maps of the form 7, and the constant function 1. Observe that the algebra
vanishes nowhere because 1 never takes the value zero. Now we will show A separates points.
Let o and y be distinct points in X. Then (by definition of equality in [0, 1], there is some
a so that m,(z) # m,(y). Since m, € A and 7,(z) # m.(y), we see A separates points. We
have checked all the hypotheses of the Stone-Weierstrass theorem and conclude that A is
dense in C(X).

3. (Rephrased Lang III §4 # 19) Let Rsg = {x € R : x > 0}, and let Cy(R>o) denote the
continuous real-valued functions on Rs¢ which vanish at infinity. Prove that Cy(Rsg) is the
uniform closure of the collection of all functions of the form e *p(x), where p is a polynomial.
(Lang’s Hint; note he phrases this question differently: First show that you can approximate
e~ by e ®q(z) for some polynomial q(x), by using Taylor’s formula with remainder. If p is a
polynomial, approximate e "*p(z) by e *¢(x) for some polynomial g.)



—T

Solution: For notational convenience, we let ¢(x) = e . We do this so we can write

expressions like po to denote the function x +— p(z)e™?.

Define the collection S of functions on Ry = (0, +00) by
S={p-¢ : pisapolynomial}.
Let S denote the closure of S C C(R,) in the uniform topology.

We write ¢? for the function z — ¢(z)?> = e ?*. Following Lang’s hint, we make the
following claim:

Claim 1. The function ¢? lies in S. That is, for every € > 0, there is an polynomial p so
that ||¢* — p@|| < €, where || - || denotes the uniform norm.

Taylor’s theorem gives us polynomial approximations to e~*. Namely, we will use the Taylor
polynomials centered at zero:
~ (=1 4
polz) = Z -

k=0
The Lagrange form of the remainder for Taylor’s theorem tells us that

k41
le™® — pu(z)| < f—@mnﬂ for some a with 0 < a < z.

(n+1)!
Observe that |f**1(a)| = e~%, so this is bounded by 1 independently of k. That is,

1
- N < n+1.
o7~ ()] < Gy
Therefore, we have
—x .n+1
2 —2x - —T|,—T € x
— Dn = sSup |€ — pnlT)e =supe € —PnlX)] <SUp — .
167 = pugll = sup 67> — pufa)e™] = supele" —pu(a)| < sup T

Observe that for any n, this supremum is realized because e 2" is zero at zero and tends

to zero as x — +o0o. By differentiability, this supremum must be realized at a critical point
of the function z + z"™e™ whose derivative is —z"e™*(z —n — 1). The only possible
critical point is x = n + 1, so we see that the supremum is just the function evaluated at
this point. In summary,

(n + 1)(n+1)

entlin+ 1)1

Now we need to show that ||¢? — p,d|| — 0 as n — oo. To do this we use Stering’s formula:

l6* — puoll <

e"n!

lim ———=1.

n—00 /27N,

By multiplying through along this sequence,

0 < lim [|¢* — p,_1¢]| < lim "~ lim cn ) = lim —— =0.
n—00 — !

. n
n—oo e'n! n—00 (ennl) (nnw /2N, n—00 /271N
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So, we see ||¢* — p,_1¢|| tends to 0 as claimed. This completes the proof of Claim 1.

We will disregard the rest of Lang’s hint, and solve the problem a slightly different way than
he suggests.

Claim 2. We claim that S is an algebra. That is, we claim:

1. If f € S and ¢ € R, then cf € S.
2. If f,g€ S, then f+g€8S.

3. If f,g € S, then the product fg:z +— f(x)g(z) lies in S.

We will prove each of these in the statements below. (The first two are fairly straight-
forward, and could probably be dismissed as “obvious” but we include them anyway.)

1. Let f € Sand ¢ € R. Let € > 0. We will show that cf € S by showing that there is
a polynomial ¢ so that ||cf — q¢|| < e. Since f € S, we can find a polynomial p so that
If —po| < 7o~ Then consider the polynomial cp. We have

lef = epoll = le| - |If —poll <e.

2. Let f,g € S. We claim that f + ¢ € S. Fix some € > 0. Since both f and g lie in S,
there are polynomials p and ¢ so that

€ €
If —poll <5 and |lg—qo| <.
2 2

Then, p + ¢ is a polynomial and, by the triangle inequality,

If+9—@+a)ol=If—po+9—qoll <|f—poll + llg — qoll <e

3. Let f,g € S. We claim that fg € S. Fix some € > 0. Since p € S, there is a polynomial
p so that

where we take = +oo if ||g]| = 0. Since ¢ € S, there is a polynomial ¢ so that

3|| [

o —poll < 3o

where again we follow the convention that = 400 when |[pe~"|| = 0. Also by Claim

e
1, there is a polynomial r so that

€
H¢2 — TQbH < PYTRNTE!
3|pa|l
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where we continue to follow convention. Observe pgr is a polynomial. Now using the above
inequalities, and the triangle inequality, we have:

| fg — paro| | fg — pogll + llpdg — pad?|| + |lpad?® — pard||
glllf = poll + Ipollllg — aoll + llpalll|o* — ro|

< ||g||ﬁ + ||p¢||m + ||pQ||3H;q” =3t3+t3=¢c

I IA

This concludes the proof of Claim 2.

Final argument. Claim 2 told us that S is an algebra, and it is of course closed. Also
observe that the function ¢(x) = e~ lies in S. This function separates points, because
it is strictly monotone decreasing. Also this function takes only non-zero values, so it
is nowhere vanishing. This means that the algebra S separates points and is nowhere
vanishing. Observe that R is locally compact. So, by the locally compact version of the
Stone-Weierstrass theorem, S = Cy(Rxo) and S is dense in Rx.
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