
Math 70100: Functions of a Real Variable I
Homework 5, due Wednesday, October 8.

Name: Insert your name here.

1. (Folland 4.7.68) For a space X, let C(X) denote the continuous functions from X to R equipped
with the uniform norm. Let X and Y be compact Hausdorff spaces. Show that the algebra
generated by functions of the form f(x, y) = g(x)h(y), where g ∈ C(X) and h ∈ C(Y ) is dense
inside of C(X × Y ).

Solution: Let A denote the algebra of functions on X × Y generated by functions of the
form

g · h : (x, y) 7→ g(x)h(y),

where g ∈ C(X) and h ∈ C(Y ). To show A is dense in C(X × Y ), we will apply the Stone-
Weierstrass theorem. We will now check the hypotheses for this theorem. First observe that
the product of two compact spaces is compact. Second, observe that A is vanishes nowhere
because product of two non-zero constant functions lies in A. Now we will show that A
separates points. Let (x1, y1),∈ (x2, y2) be distinct. Then x1 6= x2 or y1 6= y2. Without
loss of generality, assume x1 6= x2. Since X is Hausdorff, the sets {x1} and {x2} are closed.
Recall that because X is Hausdorff and compact, it is normal. So, by Urysohn’s Lemma, we
can find a continuous function g : X → R so that g(x1) = 0 and g(x2) = 1. Let h : Y → R
be the constant function h(y) = 1. Then,

g · h(x1, y1) = g(x1)h(y1) = 0 · 1 = 0 and g · h(x2, y2) = g(x2)h(y2) = 1 · 1 = 1,

showing that A separates points. Since X × Y is compact and A separates points and
vanishes nowhere, by the Stone-Weierstrass theorem, A is dense in X × Y .

2. (Folland 4.7.69) Let A be a nonempty set, and let X = [0, 1]A. Show that the algebra generated
by the coordinate maps πa : X → [0, 1] and the constant function 1 is dense in C(X).

Solution: Recall that X is compact by Tychonoff’s theorem. Let A denote the algebra
generated by the maps of the form πa and the constant function 1. Observe that the algebra
vanishes nowhere because 1 never takes the value zero. Now we will showA separates points.
Let x and y be distinct points in X. Then (by definition of equality in [0, 1]A, there is some
a so that πa(x) 6= πa(y). Since πa ∈ A and πa(x) 6= πa(y), we see A separates points. We
have checked all the hypotheses of the Stone-Weierstrass theorem and conclude that A is
dense in C(X).

3. (Rephrased Lang III §4 # 19) Let R≥0 = {x ∈ R : x ≥ 0}, and let C0(R≥0) denote the
continuous real-valued functions on R≥0 which vanish at infinity. Prove that C0(R≥0) is the
uniform closure of the collection of all functions of the form e−xp(x), where p is a polynomial.
(Lang’s Hint; note he phrases this question differently: First show that you can approximate
e−2x by e−xq(x) for some polynomial q(x), by using Taylor’s formula with remainder. If p is a
polynomial, approximate e−nxp(x) by e−xq(x) for some polynomial q.)



Solution: For notational convenience, we let φ(x) = e−x. We do this so we can write
expressions like pφ to denote the function x 7→ p(x)e−x.

Define the collection S of functions on R≥0 = (0,+∞) by

S = {p · φ : p is a polynomial}.

Let S̄ denote the closure of S ⊂ C(R+) in the uniform topology.

We write φ2 for the function x 7→ φ(x)2 = e−2x. Following Lang’s hint, we make the
following claim:

Claim 1. The function φ2 lies in S̄. That is, for every ε > 0, there is an polynomial p so
that ‖φ2 − pφ‖ < ε, where ‖ · ‖ denotes the uniform norm.

Taylor’s theorem gives us polynomial approximations to e−x. Namely, we will use the Taylor
polynomials centered at zero:

pn(x) =
n∑
k=0

(−1)k

k!
xk.

The Lagrange form of the remainder for Taylor’s theorem tells us that

|e−x − pn(x)| < fk+1(a)

(n+ 1)!
xn+1 for some a with 0 < a < x.

Observe that |fk+1(a)| = e−a, so this is bounded by 1 independently of k. That is,

|e−x − pn(x)| < 1

(n+ 1)!
xn+1.

Therefore, we have

‖φ2 − pnφ‖ = sup
x>0
|e−2x − pn(x)e−x| = sup

x>0
e−x|e−x − pn(x)| < sup

x>0

e−xxn+1

(n+ 1)!
.

Observe that for any n, this supremum is realized because e−xxn is zero at zero and tends
to zero as x→ +∞. By differentiability, this supremum must be realized at a critical point
of the function x 7→ xn+1e−x, whose derivative is −xne−x(x − n − 1). The only possible
critical point is x = n + 1, so we see that the supremum is just the function evaluated at
this point. In summary,

‖φ2 − pnφ‖ <
(n+ 1)(n+1)

en+1(n+ 1)!
.

Now we need to show that ‖φ2− pnφ‖ → 0 as n→∞. To do this we use Stering’s formula:

lim
n→∞

enn!

nn
√

2πn
= 1.

By multiplying through along this sequence,

0 ≤ lim
n→∞

‖φ2 − pn−1φ‖ ≤ lim
n→∞

nn

enn!
= lim

n→∞

( nn
enn!

)( enn!

nn
√

2πn

)
= lim

n→∞

1√
2πn

= 0.
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So, we see ‖φ2 − pn−1φ‖ tends to 0 as claimed. This completes the proof of Claim 1.

We will disregard the rest of Lang’s hint, and solve the problem a slightly different way than
he suggests.

Claim 2. We claim that S̄ is an algebra. That is, we claim:

1. If f ∈ S̄ and c ∈ R, then cf ∈ S̄.

2. If f, g ∈ S̄, then f + g ∈ S̄.

3. If f, g ∈ S̄, then the product fg : x 7→ f(x)g(x) lies in S̄.

We will prove each of these in the statements below. (The first two are fairly straight-
forward, and could probably be dismissed as “obvious” but we include them anyway.)

1. Let f ∈ S̄ and c ∈ R. Let ε > 0. We will show that cf ∈ S̄ by showing that there is
a polynomial q so that ‖cf − qφ‖ < ε. Since f ∈ S̄, we can find a polynomial p so that
‖f − pφ‖ < ε

|c| . Then consider the polynomial cp. We have

‖cf − cpφ‖ = |c| · ‖f − pφ‖ < ε.

2. Let f, g ∈ S̄. We claim that f + g ∈ S̄. Fix some ε > 0. Since both f and g lie in S̄,
there are polynomials p and q so that

‖f − pφ‖ < ε

2
and ‖g − qφ‖ < ε

2
.

Then, p+ q is a polynomial and, by the triangle inequality,

‖f + g − (p+ q)φ‖ = ‖f − pφ+ g − qφ‖ ≤ ‖f − pφ‖+ ‖g − qφ‖ < ε.

3. Let f, g ∈ S̄. We claim that fg ∈ S̄. Fix some ε > 0. Since p ∈ S̄, there is a polynomial
p so that

‖f − pφ‖ < ε

3‖g‖
,

where we take ε
3‖g‖ = +∞ if ‖g‖ = 0. Since q ∈ S̄, there is a polynomial q so that

‖g − pφ‖ < ε

3‖pφ‖
,

where again we follow the convention that ε
3‖pe−x‖ = +∞ when ‖pe−x‖ = 0. Also by Claim

1, there is a polynomial r so that

‖φ2 − rφ‖ < ε

3‖pq‖
,
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where we continue to follow convention. Observe pqr is a polynomial. Now using the above
inequalities, and the triangle inequality, we have:

‖fg − pqrφ‖ ≤ ‖fg − pφg‖+ ‖pφg − pqφ2‖+ ‖pqφ2 − pqrφ‖
= ‖g‖‖f − pφ‖+ ‖pφ‖‖g − qφ‖+ ‖pq‖‖φ2 − rφ‖
< ‖g‖ ε

3‖g‖ + ‖pφ‖ ε
3‖pφ‖ + ‖pq‖ ε

3‖pq‖ = ε
3

+ ε
3

+ ε
3

= ε.

This concludes the proof of Claim 2.

Final argument. Claim 2 told us that S̄ is an algebra, and it is of course closed. Also
observe that the function φ(x) = e−x lies in S̄. This function separates points, because
it is strictly monotone decreasing. Also this function takes only non-zero values, so it
is nowhere vanishing. This means that the algebra S̄ separates points and is nowhere
vanishing. Observe that R+ is locally compact. So, by the locally compact version of the
Stone-Weierstrass theorem, S̄ = C0(R≥0) and S is dense in R≥0.
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