Math 70100: Functions of a Real Variable I Homework 5, due Wednesday, October 8.

- 1. (Folland 4.7.68) For a space X, let C(X) denote the continuous functions from X to \mathbb{R} equipped with the uniform norm. Let X and Y be compact Hausdorff spaces. Show that the algebra generated by functions of the form f(x, y) = g(x)h(y), where $g \in C(X)$ and $h \in C(Y)$ is dense inside of $C(X \times Y)$.
- 2. (Folland 4.7.69) Let A be a nonempty set, and let $X = [0, 1]^A$. Show that the algebra generated by the coordinate maps $\pi_a : X \to [0, 1]$ and the constant function **1** is dense in C(X).
- 3. (Rephrased Lang III §4 # 19) Let $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$, and let $C_0(\mathbb{R}_{\geq 0})$ denote the continuous real-valued functions on $\mathbb{R}_{\geq 0}$ which vanish at infinity. Prove that $C_0(\mathbb{R}_{\geq 0})$ is the uniform closure of the collection of all functions of the form $e^{-x}p(x)$, where p is a polynomial. (Lang's Hint; note he phrases this question differently: First show that you can approximate e^{-2x} by $e^{-x}q(x)$ for some polynomial q(x), by using Taylor's formula with remainder. If p is a polynomial, approximate $e^{-nx}p(x)$ by $e^{-x}q(x)$ for some polynomial q(x).