Math 70100: Functions of a Real Variable |
Homework 4, due Wednesday, October 1.

1. (Lang Chapter 2, problem 20) Recall that a space is called second countable if it has a countable
base for its topology. (Lang calls this notion separable.) A topological space is metrizable if it
has a metric which induces the same topology on the space. A space is normal if it is Hausdorff
and for any two disjoint closed sets A and B there are open sets U and V with AC U, BCV
and UNV = 0.

Prove that a normal separable space X is metrizable. (Follow the hint suggested by Lang.)
(This is the Urysohn Metrization Theorem.)

Solution: We follow the hint of Lang. Suppose X is normal and separable. Let U =
{U, : n € N} be a countable basis. Observe that the collection P of all pairs (U,,U,,) €
U x U with U, C U, is countable (as it is a subset of the countable set U x U.) Therefore,
it can be enumerated as

P = {(Un(i), Um(i)) 1€ N}.

For each ¢ € N, Urysohn’s lemma gives us a continuous function f : X — [0,1] so that
f(x) =0 for x € Uy and f(z) = 1 for € Up,(). For z,y € X, define

de.y) = 3 i) — £l
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Observe that the series (sum) converges because it is bounded by the convergent series,
D ieN 2% = 1.

First we claim that d is a metric. Clearly d(z,y) = d(y,z) > 0 and d(z,z) = 0 for z,y € X.
Also, it satisfies the triangle inequality, because we can apply the triangle inequality on R
term-wise:

d(wy) + d(y,2) = 32 (1) — W) + 1) — HEN) 2 3 21w = )| = dia.2)
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We still need to show that = # y implies d(z,y) > 0. For this we use the following
observation:

Claim. If x € V with V open in X, then there is an i € N so that the z € U,; and
Proof of claim. Since U is a basis, there is a U € U with x € U’ C V. Because X is
Hausdorff, the set {z} is closed. Thus {z} and X \ U are disjoint and closed. By normality,
there are disjoint open sets U’ and V' with x € U’ and X ~ U C V’. In particular, we
see that € U’ € U’ € X . V'. Again because U is a basis, we can find an U” € U with
x € U" C U'. Now observe that we have found a U and U” in U witha € U" c U” c U C V.
By definition of P, we see (U",U) € P, so there is an i € N so that (U",U) = (Un(), Um())-

Now suppose z # y. We will show that d(z,y) > 0. Because X is normal it is Hausdorff.
So, there are disjoint open sets U and V with x € U and y € V. Now by the claim there is




an ¢ with € Uy ;) and Uy, C U. Observe that by definition of f; we have f;(x) = 0 and

fi(y) = 1. Thus,

1

|f1( )= i)l =

d( ) i

= 5

Now we need to see that d induces the same topology. Let T denote the original topology,
and M denote the metric topology induced by d. We will show that they have the same
open sets.

Let U be open in 7 and let x € U. Then by the claim, we can find an i so that z € U,(;) and
Un@ CU. Set r = 2i We will show that B,(x) C U, which implies that U is open in M.
Equivalently, we can show that X N\ U C X \ B,(x). Suppose y € U. Because Uy,; C U,
we have f;(y) = 1. Also because x € U,(;), we have f;(z) = 0. Thus,

d(z,y) >

which means that y ¢ B,(x) as desired.

> 1) = fiw)| =7

Now choose z € X and r > 0. We will show the open ball B,(x) is open in 7. Since r > 0,
there is an N € N so that

1

> 5 <

i=N
Now define the function é : X — R by

l\')lﬁ

5(y) = %If‘( )~ FW)
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Since this is a finite sum of continuous functions, we know that 0 is continuous. Let U =
671 ((—00,%)). By continuity of §, U is open. Also observe that because d(z) = 0, we know
x € U. We claim that U C B,(z). Let y € U. Then,

d(z,y Z_|fz y)| < d(y) +Z g gzr.

So, y € B,(x) as claimed.

2. (Royden-Fitzpatrick §12.1 # 6) Let X be a set and T be a topology on X. Let C'(X) denote
the collection of all continuous real-valued functions on (X,7), and let W denote the weak
topology induced by C(X). (That is W is the coarsest topology on X so that every f € C(X)
is continuous.) Show that if (X, 7) is normal, then the two topologies are identical.

Solution: We show the topologies are identical by showing that they have the same open
sets.
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A subbasis for the weak topology, W, is given sets of the form f~!(J) where J C R is open
and f € C(X). Then by definition of C(X), f is continuous and therefore f~!(.J) is open
in (X, 7). This shows that W C T.

Now let U be open in (X,7T). Let x € U. Since (X,7T) is normal, it is Hausdorff, which
implies that {z} is closed. Observe that {z} and X ~ {U} are closed and disjoint. So,
Urysohn’s lemma implies that there is a continuous function f, : X — [0, 1] so that f(z) =1
and f(y) = 0for each y € X\U. By definition of the weak topology, W, = f~*((3,00)) C U
is open in WW. We may make a choice of f, and W, for each x € U. So, U = UzeU W, is
open in W.

3. (Following Rudin’s Real and Complex Analysis, pp. 69) Let X be a locally compact Hausdorff
space. (Recall this means that every x € X has a compact neighborhood.)

A compactly supported function on X is a function f : X — R so that there is a compact set
K C X so that f(z) =0 for x ¢ K. We write C.(X) to denote the collection of all continuous
compactly supported functions on X.

A function f : X — R wvanishes at infinity if for all € > 0 there is a compact set K C X so
that |f(x)] < e for x ¢ K. We write Cy(X) to denote the collection of all continuous functions
which vanish at oo.

We endow these spaces with the uniform (or sup) norm. Observe that C.(X) C Co(X).

(a) Show that C.(X) is dense in Cy(X). (Hint: You need the version of Urysohn’s lemma
given in class: If X is locally compact and Hausdorff, and K C U C X with K compact
and U open, then there is a continuous f : X — [0,1] so that f(z) = 1 for x € K and
flx)y=0forz g U.)

Solution: Let f € Cy(X). It suffices to show that for each € > 0, thereisa g € C.(X)
with ||f — g|| < €, where || - || denotes the uniform norm. Fix € > 0. Since f € Cy(X),
there is a compact set K C X so that |f(z)] < € when z ¢ K. Since X is locally
compact, for each € K we can find an open neighborhood U, C X of x with compact
closure, U,. Then, {U, : x € K} is an open cover of K, which by compactness has a
finite subcover

{Usys--- Uz, }

Let V = J_, U,,. Then K and X \ V are closed and disjoint, so Urysohn’s lemma
yields a continuous function h : X — [0,1] so that h(z) = 1 for z € K and h(z) =0
for x ¢ V. Consider the product function

h-f: X—=R;, zw— h(z)f(x).

We see that h- f € C.(X) since h is zero outside the compact set V = |J_, U,,. (Note
a finite union of compact sets is compact.) Also, we have || f — h - f|| < €, because:

o If v € K then f(z) — h(z)f(x) = f(z) —1- f(z) =0.
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o If v ¢ K, then 0 < h(x) <1and|f(z)|] <e¢, so

|f(2) = (@) f(2)] = [1 = h@)|[f(@)] < [f(2)] <e

This concludes the argument: g = h - f € C.(X) satisfies || f — g|| < e.

(b) Show that Cy(X) is a Banach space (i.e., that it is complete).
Together, this shows that Cy(X) is the metric completion of C.(X).

Solution: First observe that Cy(X) is a subspace of the bounded continuous functions from
X to R. (An f € Cy(X) is bounded because there is a compact set K so that |f(x)| < 1 for
x ¢ K, and by continuity and compactness, f is bounded on K.)

Recall that we showed that the space B(X) of all bounded real-valued functions on X is a
complete metric space when endowed with the uniform norm. We also showed that the space
of bounded continuous functions BC'(X) is a closed subset of B(X') and is hence also complete.
We noted above that Cy(X) C BC(X).

To show Cy(X) is complete, let {f, € Cy(X)} be a uniformly-Cauchy sequence. By com-
pleteness of BC(X), there is an f € BC(X) so that f, — f uniformly. It remains to show
that f € Cy(X). Let € > 0. Since f, — f uniformly, there is an N so that n > N implies
that ||f, — f|| < §. Fix some n > N. Because f, € Cy(X), there is a compact K C X so that
|fu(2)| < § when ¢ K. Then for z ¢ K, by the triangle inequality, we have

€

2

= €.

()] < [f(x) = ful@)] + [ fulz)] < %4_

This demonstrates that f € Cy(X).
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