Math 70100: Functions of a Real Variable I Homework 4, due Wednesday, October 1.

1. (Lang Chapter 2, problem 20) Recall that a space is called second countable if it has a countable base for its topology. (Lang calls this notion separable.) A topological space is metrizable if it has a metric which induces the same topology on the space. A space is normal if it is Hausdorff and for any two disjoint closed sets A and B there are open sets U and V with $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Prove that a normal separable space X is metrizable. (Follow the hint suggested by Lang.) (This is the *Urysohn Metrization Theorem*.)

Solution: We follow the hint of Lang. Suppose X is normal and separable. Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be a countable basis. Observe that the collection \mathcal{P} of all pairs $(U_n, U_m) \in \mathcal{U} \times \mathcal{U}$ with $\overline{U}_n \subset U_m$ is countable (as it is a subset of the countable set $\mathcal{U} \times \mathcal{U}$.) Therefore, it can be enumerated as

$$\mathcal{P} = \{ (U_{n(i)}, U_{m(i)}) : i \in \mathbb{N} \}.$$

For each $i \in \mathbb{N}$, Urysohn's lemma gives us a continuous function $f : X \to [0, 1]$ so that f(x) = 0 for $x \in \overline{U}_{n(i)}$ and f(x) = 1 for $x \notin U_{m(i)}$. For $x, y \in X$, define

$$d(x,y) = \sum_{i \in \mathbb{N}} \frac{1}{2^i} |f_i(x) - f_i(y)|.$$

Observe that the series (sum) converges because it is bounded by the convergent series, $\sum_{i \in \mathbb{N}} \frac{1}{2^n} = 1.$

First we claim that d is a metric. Clearly $d(x, y) = d(y, x) \ge 0$ and d(x, x) = 0 for $x, y \in X$. Also, it satisfies the triangle inequality, because we can apply the triangle inequality on \mathbb{R} term-wise:

$$d(x,y) + d(y,z) = \sum_{i \in \mathbb{N}} \frac{1}{2^i} \left(|f_i(x) - f_i(y)| + |f_i(y) - f_i(z)| \right) \ge \sum_{i \in \mathbb{N}} \frac{1}{2^i} |f_i(x) - f_i(z)| = d(x,z).$$

We still need to show that $x \neq y$ implies d(x, y) > 0. For this we use the following observation:

Claim. If $x \in V$ with V open in X, then there is an $i \in \mathbb{N}$ so that the $x \in U_{n(i)}$ and $U_{m(i)} \subset V$.

Proof of claim. Since \mathcal{U} is a basis, there is a $U \in \mathcal{U}$ with $x \in U' \subset V$. Because X is Hausdorff, the set $\{x\}$ is closed. Thus $\{x\}$ and $X \setminus U$ are disjoint and closed. By normality, there are disjoint open sets U' and V' with $x \in U'$ and $X \setminus U \subset V'$. In particular, we see that $x \in U' \subset \overline{U}' \subset X \setminus V'$. Again because \mathcal{U} is a basis, we can find an $U'' \in \mathcal{U}$ with $x \in U'' \subset U'$. Now observe that we have found a U and U'' in \mathcal{U} with $x \in U'' \subset \overline{U} \subset V$. By definition of \mathcal{P} , we see $(U'', U) \in \mathcal{P}$, so there is an $i \in \mathbb{N}$ so that $(U'', U) = (U_{n(i)}, U_{m(i)})$.

Now suppose $x \neq y$. We will show that d(x, y) > 0. Because X is normal it is Hausdorff. So, there are disjoint open sets U and V with $x \in U$ and $y \in V$. Now by the claim there is an *i* with $x \in U_{n(i)}$ and $U_{m(i)} \subset U$. Observe that by definition of f_i we have $f_i(x) = 0$ and $f_i(y) = 1$. Thus,

$$d(x,y) \ge \frac{1}{2^i} |f_i(x) - f_i(y)| = \frac{1}{2^i}.$$

Now we need to see that d induces the same topology. Let \mathcal{T} denote the original topology, and \mathcal{M} denote the metric topology induced by d. We will show that they have the same open sets.

Let U be open in \mathcal{T} and let $x \in U$. Then by the claim, we can find an i so that $x \in U_{n(i)}$ and $U_{m(i)} \subset U$. Set $r = \frac{1}{2^i}$. We will show that $B_r(x) \subset U$, which implies that U is open in \mathcal{M} . Equivalently, we can show that $X \setminus U \subset X \setminus B_r(x)$. Suppose $y \notin U$. Because $U_{m(i)} \subset U$, we have $f_i(y) = 1$. Also because $x \in U_{n(i)}$, we have $f_i(x) = 0$. Thus,

$$d(x,y) \ge \frac{1}{2^i} |f_i(x) - f_i(y)| = r,$$

which means that $y \notin B_r(x)$ as desired.

Now choose $x \in X$ and r > 0. We will show the open ball $B_r(x)$ is open in \mathcal{T} . Since r > 0, there is an $N \in \mathbb{N}$ so that

$$\sum_{i=N}^{\infty} \frac{1}{2^i} < \frac{r}{2}$$

Now define the function $\delta: X \to \mathbb{R}$ by

$$\delta(y) = \sum_{i=1}^{N-1} \frac{1}{2^i} |f_i(x) - f_i(y)|.$$

Since this is a finite sum of continuous functions, we know that δ is continuous. Let $U = \delta^{-1}((-\infty, \frac{r}{2}))$. By continuity of δ , U is open. Also observe that because $\delta(x) = 0$, we know $x \in U$. We claim that $U \subset B_r(x)$. Let $y \in U$. Then,

$$d(x,y) = \delta(y) + \sum_{i=N}^{\infty} \frac{1}{2^i} |f_i(x) - f_i(y)| \le \delta(y) + \sum_{i=N}^{\infty} \frac{1}{2^i} < \frac{r}{2} + \frac{r}{2} = r.$$

So, $y \in B_r(x)$ as claimed.

2. (Royden-Fitzpatrick §12.1 # 6) Let X be a set and \mathcal{T} be a topology on X. Let C(X) denote the collection of all continuous real-valued functions on (X, \mathcal{T}) , and let \mathcal{W} denote the weak topology induced by C(X). (That is \mathcal{W} is the coarsest topology on X so that every $f \in C(X)$ is continuous.) Show that if (X, \mathcal{T}) is normal, then the two topologies are identical.

Solution: We show the topologies are identical by showing that they have the same open sets.

A subbasis for the weak topology, \mathcal{W} , is given sets of the form $f^{-1}(J)$ where $J \subset \mathbb{R}$ is open and $f \in C(X)$. Then by definition of C(X), f is continuous and therefore $f^{-1}(J)$ is open in (X, \mathcal{T}) . This shows that $\mathcal{W} \subset \mathcal{T}$.

Now let U be open in (X, \mathcal{T}) . Let $x \in U$. Since (X, \mathcal{T}) is normal, it is Hausdorff, which implies that $\{x\}$ is closed. Observe that $\{x\}$ and $X \setminus \{U\}$ are closed and disjoint. So, Urysohn's lemma implies that there is a continuous function $f_x : X \to [0, 1]$ so that f(x) = 1and f(y) = 0 for each $y \in X \setminus U$. By definition of the weak topology, $W_x = f^{-1}((\frac{1}{2}, \infty)) \subset U$ is open in \mathcal{W} . We may make a choice of f_x and W_x for each $x \in U$. So, $U = \bigcup_{x \in U} W_x$ is open in \mathcal{W} .

3. (Following Rudin's Real and Complex Analysis, pp. 69) Let X be a locally compact Hausdorff space. (Recall this means that every $x \in X$ has a compact neighborhood.)

A compactly supported function on X is a function $f: X \to \mathbb{R}$ so that there is a compact set $K \subset X$ so that f(x) = 0 for $x \notin K$. We write $C_c(X)$ to denote the collection of all continuous compactly supported functions on X.

A function $f: X \to \mathbb{R}$ vanishes at infinity if for all $\epsilon > 0$ there is a compact set $K \subset X$ so that $|f(x)| < \epsilon$ for $x \notin K$. We write $C_0(X)$ to denote the collection of all continuous functions which vanish at ∞ .

We endow these spaces with the uniform (or sup) norm. Observe that $C_c(X) \subset C_0(X)$.

(a) Show that $C_c(X)$ is dense in $C_0(X)$. (*Hint:* You need the version of Urysohn's lemma given in class: If X is locally compact and Hausdorff, and $K \subset U \subset X$ with K compact and U open, then there is a continuous $f: X \to [0,1]$ so that f(x) = 1 for $x \in K$ and f(x) = 0 for $x \notin U$.)

Solution: Let $f \in C_0(X)$. It suffices to show that for each $\epsilon > 0$, there is a $g \in C_c(X)$ with $||f - g|| < \epsilon$, where $|| \cdot ||$ denotes the uniform norm. Fix $\epsilon > 0$. Since $f \in C_0(X)$, there is a compact set $K \subset X$ so that $|f(x)| < \epsilon$ when $x \notin K$. Since X is locally compact, for each $x \in K$ we can find an open neighborhood $U_x \subset X$ of x with compact closure, \overline{U}_x . Then, $\{U_x : x \in K\}$ is an open cover of K, which by compactness has a finite subcover

$$\{U_{x_1},\ldots,U_{x_n}\}.$$

Let $V = \bigcup_{i=1}^{n} U_{x_i}$. Then K and $X \setminus V$ are closed and disjoint, so Urysohn's lemma yields a continuous function $h : X \to [0, 1]$ so that h(x) = 1 for $x \in K$ and h(x) = 0 for $x \notin V$. Consider the product function

$$h \cdot f : X \to \mathbb{R}; \quad x \mapsto h(x)f(x).$$

We see that $h \cdot f \in C_c(X)$ since h is zero outside the compact set $\overline{V} = \bigcup_{i=1}^n \overline{U}_{x_i}$. (Note a finite union of compact sets is compact.) Also, we have $||f - h \cdot f|| < \epsilon$, because:

• If $x \in K$ then $f(x) - h(x)f(x) = f(x) - 1 \cdot f(x) = 0$.

• If $x \notin K$, then $0 \le h(x) \le 1$ and $|f(x)| < \epsilon$, so

$$|f(x) - h(x)f(x)| = |1 - h(x)||f(x)| \le |f(x)| < \epsilon.$$

This concludes the argument: $g = h \cdot f \in C_c(X)$ satisfies $||f - g|| < \epsilon$.

(b) Show that $C_0(X)$ is a Banach space (i.e., that it is complete).

Together, this shows that $C_0(X)$ is the metric completion of $C_c(X)$.

Solution: First observe that $C_0(X)$ is a subspace of the bounded continuous functions from X to \mathbb{R} . (An $f \in C_0(X)$ is bounded because there is a compact set K so that |f(x)| < 1 for $x \notin K$, and by continuity and compactness, f is bounded on K.)

Recall that we showed that the space B(X) of all bounded real-valued functions on X is a complete metric space when endowed with the uniform norm. We also showed that the space of bounded continuous functions BC(X) is a closed subset of B(X) and is hence also complete. We noted above that $C_0(X) \subset BC(X)$.

To show $C_0(X)$ is complete, let $\{f_n \in C_0(X)\}$ be a uniformly-Cauchy sequence. By completeness of BC(X), there is an $f \in BC(X)$ so that $f_n \to f$ uniformly. It remains to show that $f \in C_0(X)$. Let $\epsilon > 0$. Since $f_n \to f$ uniformly, there is an N so that n > N implies that $||f_n - f|| < \frac{\epsilon}{2}$. Fix some n > N. Because $f_n \in C_0(X)$, there is a compact $K \subset X$ so that $||f_n(x)| < \frac{\epsilon}{2}$ when $x \notin K$. Then for $x \notin K$, by the triangle inequality, we have

$$|f(x)| \le |f(x) - f_n(x)| + |f_n(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This demonstrates that $f \in C_0(X)$.