
Math 70100: Functions of a Real Variable I
Homework 4, due Wednesday, October 1.

1. (Lang Chapter 2, problem 20) Recall that a space is called second countable if it has a countable
base for its topology. (Lang calls this notion separable.) A topological space is metrizable if it
has a metric which induces the same topology on the space. A space is normal if it is Hausdorff
and for any two disjoint closed sets A and B there are open sets U and V with A ⊂ U , B ⊂ V
and U ∩ V = ∅.
Prove that a normal separable space X is metrizable. (Follow the hint suggested by Lang.)
(This is the Urysohn Metrization Theorem.)

Solution: We follow the hint of Lang. Suppose X is normal and separable. Let U =
{Un : n ∈ N} be a countable basis. Observe that the collection P of all pairs (Un, Um) ∈
U × U with Ūn ⊂ Um is countable (as it is a subset of the countable set U × U .) Therefore,
it can be enumerated as

P = {(Un(i), Um(i)) : i ∈ N}.

For each i ∈ N, Urysohn’s lemma gives us a continuous function f : X → [0, 1] so that
f(x) = 0 for x ∈ Ūn(i) and f(x) = 1 for x 6∈ Um(i). For x, y ∈ X, define

d(x, y) =
∑
i∈N

1

2i
|fi(x)− fi(y)|.

Observe that the series (sum) converges because it is bounded by the convergent series,∑
i∈N

1
2n

= 1.

First we claim that d is a metric. Clearly d(x, y) = d(y, x) ≥ 0 and d(x, x) = 0 for x, y ∈ X.
Also, it satisfies the triangle inequality, because we can apply the triangle inequality on R
term-wise:

d(x, y) + d(y, z) =
∑
i∈N

1

2i
(
|fi(x)− fi(y)|+ |fi(y)− fi(z)|

)
≥
∑
i∈N

1

2i
|fi(x)− fi(z)| = d(x, z).

We still need to show that x 6= y implies d(x, y) > 0. For this we use the following
observation:

Claim. If x ∈ V with V open in X, then there is an i ∈ N so that the x ∈ Un(i) and
Um(i) ⊂ V .
Proof of claim. Since U is a basis, there is a U ∈ U with x ∈ U ′ ⊂ V . Because X is
Hausdorff, the set {x} is closed. Thus {x} and XrU are disjoint and closed. By normality,
there are disjoint open sets U ′ and V ′ with x ∈ U ′ and X r U ⊂ V ′. In particular, we
see that x ∈ U ′ ⊂ Ū ′ ⊂ X r V ′. Again because U is a basis, we can find an U ′′ ∈ U with
x ∈ U ′′ ⊂ U ′. Now observe that we have found a U and U ′′ in U with x ∈ U ′′ ⊂ Ū ′′ ⊂ U ⊂ V.
By definition of P , we see (U ′′, U) ∈ P , so there is an i ∈ N so that (U ′′, U) = (Un(i), Um(i)).

Now suppose x 6= y. We will show that d(x, y) > 0. Because X is normal it is Hausdorff.
So, there are disjoint open sets U and V with x ∈ U and y ∈ V . Now by the claim there is



an i with x ∈ Un(i) and Um(i) ⊂ U . Observe that by definition of fi we have fi(x) = 0 and
fi(y) = 1. Thus,

d(x, y) ≥ 1

2i
|fi(x)− fi(y)| = 1

2i
.

Now we need to see that d induces the same topology. Let T denote the original topology,
and M denote the metric topology induced by d. We will show that they have the same
open sets.

Let U be open in T and let x ∈ U . Then by the claim, we can find an i so that x ∈ Un(i) and
Um(i) ⊂ U . Set r = 1

2i
. We will show that Br(x) ⊂ U , which implies that U is open in M.

Equivalently, we can show that X r U ⊂ X r Br(x). Suppose y 6∈ U . Because Um(i) ⊂ U ,
we have fi(y) = 1. Also because x ∈ Un(i), we have fi(x) = 0. Thus,

d(x, y) ≥ 1

2i
|fi(x)− fi(y)| = r,

which means that y 6∈ Br(x) as desired.

Now choose x ∈ X and r > 0. We will show the open ball Br(x) is open in T . Since r > 0,
there is an N ∈ N so that

∞∑
i=N

1

2i
<
r

2
.

Now define the function δ : X → R by

δ(y) =
N−1∑
i=1

1

2i
|fi(x)− fi(y)|.

Since this is a finite sum of continuous functions, we know that δ is continuous. Let U =
δ−1
(
(−∞, r

2
)
)
. By continuity of δ, U is open. Also observe that because δ(x) = 0, we know

x ∈ U . We claim that U ⊂ Br(x). Let y ∈ U . Then,

d(x, y) = δ(y) +
∞∑
i=N

1

2i
|fi(x)− fi(y)| ≤ δ(y) +

∞∑
i=N

1

2i
<
r

2
+
r

2
= r.

So, y ∈ Br(x) as claimed.

2. (Royden-Fitzpatrick §12.1 # 6) Let X be a set and T be a topology on X. Let C(X) denote
the collection of all continuous real-valued functions on (X, T ), and let W denote the weak
topology induced by C(X). (That is W is the coarsest topology on X so that every f ∈ C(X)
is continuous.) Show that if (X, T ) is normal, then the two topologies are identical.

Solution: We show the topologies are identical by showing that they have the same open
sets.
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A subbasis for the weak topology, W , is given sets of the form f−1(J) where J ⊂ R is open
and f ∈ C(X). Then by definition of C(X), f is continuous and therefore f−1(J) is open
in (X, T ). This shows that W ⊂ T .

Now let U be open in (X, T ). Let x ∈ U . Since (X, T ) is normal, it is Hausdorff, which
implies that {x} is closed. Observe that {x} and X r {U} are closed and disjoint. So,
Urysohn’s lemma implies that there is a continuous function fx : X → [0, 1] so that f(x) = 1
and f(y) = 0 for each y ∈ XrU . By definition of the weak topology, Wx = f−1

(
(1
2
,∞)

)
⊂ U

is open in W . We may make a choice of fx and Wx for each x ∈ U . So, U =
⋃
x∈U Wx is

open in W .

3. (Following Rudin’s Real and Complex Analysis, pp. 69) Let X be a locally compact Hausdorff
space. (Recall this means that every x ∈ X has a compact neighborhood.)

A compactly supported function on X is a function f : X → R so that there is a compact set
K ⊂ X so that f(x) = 0 for x 6∈ K. We write Cc(X) to denote the collection of all continuous
compactly supported functions on X.

A function f : X → R vanishes at infinity if for all ε > 0 there is a compact set K ⊂ X so
that |f(x)| < ε for x 6∈ K. We write C0(X) to denote the collection of all continuous functions
which vanish at ∞.

We endow these spaces with the uniform (or sup) norm. Observe that Cc(X) ⊂ C0(X).

(a) Show that Cc(X) is dense in C0(X). (Hint: You need the version of Urysohn’s lemma
given in class: If X is locally compact and Hausdorff, and K ⊂ U ⊂ X with K compact
and U open, then there is a continuous f : X → [0, 1] so that f(x) = 1 for x ∈ K and
f(x) = 0 for x 6∈ U .)

Solution: Let f ∈ C0(X). It suffices to show that for each ε > 0, there is a g ∈ Cc(X)
with ‖f − g‖ < ε, where ‖ · ‖ denotes the uniform norm. Fix ε > 0. Since f ∈ C0(X),
there is a compact set K ⊂ X so that |f(x)| < ε when x 6∈ K. Since X is locally
compact, for each x ∈ K we can find an open neighborhood Ux ⊂ X of x with compact
closure, Ūx. Then, {Ux : x ∈ K} is an open cover of K, which by compactness has a
finite subcover

{Ux1 , . . . , Uxn}.

Let V =
⋃n
i=1 Uxi . Then K and X r V are closed and disjoint, so Urysohn’s lemma

yields a continuous function h : X → [0, 1] so that h(x) = 1 for x ∈ K and h(x) = 0
for x 6∈ V . Consider the product function

h · f : X → R; x 7→ h(x)f(x).

We see that h · f ∈ Cc(X) since h is zero outside the compact set V̄ =
⋃n
i=1 Ūxi . (Note

a finite union of compact sets is compact.) Also, we have ‖f − h · f‖ < ε, because:

• If x ∈ K then f(x)− h(x)f(x) = f(x)− 1 · f(x) = 0.
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• If x 6∈ K, then 0 ≤ h(x) ≤ 1 and |f(x)| < ε, so

|f(x)− h(x)f(x)| =
∣∣1− h(x)

∣∣|f(x)| ≤ |f(x)| < ε.

This concludes the argument: g = h · f ∈ Cc(X) satisfies ‖f − g‖ < ε.

(b) Show that C0(X) is a Banach space (i.e., that it is complete).

Together, this shows that C0(X) is the metric completion of Cc(X).

Solution: First observe that C0(X) is a subspace of the bounded continuous functions from
X to R. (An f ∈ C0(X) is bounded because there is a compact set K so that |f(x)| < 1 for
x 6∈ K, and by continuity and compactness, f is bounded on K.)

Recall that we showed that the space B(X) of all bounded real-valued functions on X is a
complete metric space when endowed with the uniform norm. We also showed that the space
of bounded continuous functions BC(X) is a closed subset of B(X) and is hence also complete.
We noted above that C0(X) ⊂ BC(X).

To show C0(X) is complete, let {fn ∈ C0(X)} be a uniformly-Cauchy sequence. By com-
pleteness of BC(X), there is an f ∈ BC(X) so that fn → f uniformly. It remains to show
that f ∈ C0(X). Let ε > 0. Since fn → f uniformly, there is an N so that n > N implies
that ‖fn − f‖ < ε

2
. Fix some n > N . Because fn ∈ C0(X), there is a compact K ⊂ X so that

|fn(x)| < ε
2

when x 6∈ K. Then for x 6∈ K, by the triangle inequality, we have

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < ε

2
+
ε

2
= ε.

This demonstrates that f ∈ C0(X).
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