Math 70100: Functions of a Real Variable I Homework 4, due Wednesday, October 1.

Name: Insert your name here.

1. (Lang Chapter 2, problem 20) Recall that a space is called second countable if it has a countable base for its topology. (Lang calls this notion separable.) A topological space is metrizable if it has a metric which induces the same topology on the space. A space is normal if it is Hausdorff and for any two disjoint closed sets A and B there are open sets U and V with $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Prove that a normal separable space X is metrizable. (Follow the hint suggested by Lang.) (This is the *Urysohn Metrization Theorem*.)

- 2. (Royden-Fitzpatrick §12.1 # 6) Let X be a set and \mathcal{T} be a topology on X. Let C(X) denote the collection of all continuous real-valued functions on (X, \mathcal{T}) , and let \mathcal{W} denote the weak topology induced by C(X). (That is \mathcal{W} is the coarsest topology on X so that every $f \in C(X)$ is continuous.) Show that if (X, \mathcal{T}) is normal, then the two topologies are identical.
- 3. (Following Rudin's Real and Complex Analysis, pp. 69) Let X be a locally compact Hausdorff space. (Recall this means that every $x \in X$ has a compact neighborhood.)

A compactly supported function on X is a function $f: X \to \mathbb{R}$ so that there is a compact set $K \subset X$ so that f(x) = 0 for $x \notin K$. We write $C_c(X)$ to denote the collection of all continuous compactly supported functions on X.

A function $f: X \to \mathbb{R}$ vanishes at infinity if for all $\epsilon > 0$ there is a compact set $K \subset X$ so that $|f(x)| < \epsilon$ for $x \notin K$. We write $C_0(X)$ to denote the collection of all continuous functions which vanish at ∞ .

We endow these spaces with the uniform (or sup) norm. Observe that $C_c(X) \subset C_0(X)$.

- (a) Show that $C_c(X)$ is dense in $C_0(X)$. (*Hint:* You need the version of Urysohn's lemma given in class: If X is locally compact and Hausdorff, and $K \subset U \subset X$ with K compact and U open, then there is a continuous $f: X \to [0,1]$ so that f(x) = 1 for $x \in K$ and f(x) = 0 for $x \notin U$.)
- (b) Show that $C_0(X)$ is a Banach space (i.e., that it is complete).

Together, this shows that $C_0(X)$ is the metric completion of $C_c(X)$.