1. The Hilbert cube is the countable product $H=[0,1]^{\mathbb{N}}$ of all functions $\mathbb{N} \rightarrow[0,1]$ endowed with the product topology. Give a direct proof that the Hilbert cube is sequentially compact. That is, given a sequence $\left\{\alpha^{n} \in H\right\}_{n \in \mathbb{N}}$, find a convergent subsequence. (Hint: You may want to use a version of the Cantor diagonal argument.)

Solution: Let $\left\{\alpha^{n} \in H\right\}_{n \in \mathbb{N}}$ be any sequence in H. We will show it has a convergent sequence. Write $\alpha^{n}=\left\{a_{k}^{n}\right\}_{k \in \mathbb{N}}$.

We will inductively define a subsequences of $\left\{\alpha^{n} \in H\right\}_{n \in \mathbb{N}}$. Let $n_{0}(m)=m$. Then $\alpha^{m}=$ $\alpha^{n_{0}(m)}$. This defines a first subsequence of $\left\{\alpha_{n}\right\}$ namely

$$
\left\{\alpha^{n_{0}(m)}\right\}_{m \in \mathbb{N}}
$$

though we are just using new notation for the same sequence. Now let us suppose that $\alpha^{n_{i-1}(m)}$ is defined for some $i \in \mathbb{N}$. Observe that the i-th term in the sequence $\alpha^{n_{i-1}(m)}$ is $a_{i}^{n_{i-1}(m)}$. The sequence $\left\{a_{i}^{n_{i-1}(m)}\right\}_{m \in \mathbb{N}}$ is a sequence in $[0,1]$. By the compactness of $[0,1]$, there is a convergent subsequence

$$
\left\{a_{i}^{n_{i}(m)}\right\}_{m \in \mathbb{N}} \quad \text { of } \quad\left\{a_{i}^{n_{i-1}(m)}\right\}_{m \in \mathbb{N}}
$$

, i.e., $\left\{n_{i}(m): m \in \mathbb{N}\right\}$ is an infinite subset of $\left\{n_{i-1}(m): m \in \mathbb{N}\right\}, n_{i-1}(m)$ is an increasing function $\mathbb{N} \rightarrow \mathbb{N}$, and $\lim _{m \rightarrow \infty} a_{i}^{n_{i}(m)}$ is some $b_{i} \in[0,1]$.

Remarks: We make a couple of remarks to clarify the argument if you haven't studied a diagonal argument before. We have determined an integer $n_{i}(m)$ for each $i \geq 0$ and $m \in \mathbb{N}$. Because each n_{i} indexes a subsequence, the quantity $n_{i}(m)$ strictly increases as we fix i and increase m, i.e., $n_{i}(m)>n_{i}(m+1)$ for all i and m. As we increment i we get a subsequence, so $n_{i+1}(m) \geq n_{i}(m)$ for all i and m. In particular, note that the diagonal is strictly increasing: $n_{k+1}(k+1)>n_{k}(k)$ for all k. The sequence indexed by $n_{k}(k)$ is the diagonal subsequence of $\left\{\alpha^{n}\right\}$.

By induction, we have define a subsequence for each integer $\left.i \geq 0,\left\{\alpha^{n_{i}(m)}\right\}_{m \in \mathbb{N}}\right\}$. Consider the diagonal subsequence given by

$$
\left\{\alpha^{n_{k}(k)}\right\}_{k \in \mathbb{N}} .
$$

We claim that this sequence converges in H. To do this, it is sufficient to show that for each $i \in \mathbb{N}$ that

$$
\lim _{k \rightarrow \infty} a_{i}^{n_{k}(k)}=b_{i}
$$

where b_{i} was the limit of $\left\{a_{i}^{n_{i}(m)}\right\}_{i \in \mathbb{N}}$ as described above. (We explain this in the remark below.) Note that limiting behavior does not change if we drop finitely many elements of the sequence. Because for each $k \geq i$, the sequence $\left.\left\{\alpha^{n_{k}(m)}\right\}_{m \in \mathbb{N}}\right\}$ is a subsequence of $\left.\left\{\alpha^{n_{i}(m)}\right\}_{m \in \mathbb{N}}\right\}$, for each $k \geq i$, there is an m so that $n_{k}(k)=n_{i}(m)$. In particular, the portion of the diagonal subsequence,

$$
\left.\left\{\alpha^{n_{k}(k)}\right\}_{k \geq i} \text { is a subsequence of }\left\{\alpha^{n_{i}(m)}\right\}_{m \in \mathbb{N}}\right\} .
$$

Then because subsequences of convergent sequences have the same limits, we know

$$
\lim _{k \rightarrow \infty} a_{i}^{n_{k}(k)}=b_{i}
$$

Remark: We have shown that $\left\{a_{i}^{n_{k}(k)}\right\}_{k \in \mathbb{N}}$ converges to b_{i} for every $i \in \mathbb{N}$, but we haven't explained that $\left\{\alpha^{n_{k}(k)}\right\}_{k \in \mathbb{N}}$ converges to $\beta=\left\{b_{i}\right\}_{i \in \mathbb{N}}$. Let $N \subset H$ be a neighborhood of β. Note we are using the product topology, which is the coarsest topology so that the projection functions $\pi_{i}: H \rightarrow[0,1]$ are continuous. The pre-images of open sets under these projections form a subbasis, so there is a collection of indices $\{i(j): j \in J\}$ with J a finite set and a choice of $U_{j} \subset[0,1]$ so that

$$
\beta \in \bigcap_{j \in J} \pi_{i(j)}^{-1}\left(U_{j}\right) \subset N
$$

Each U_{j} is an open set containing $b_{i(j)}$, so for each $j \in J$ there is an integer K_{j} so that

$$
a_{i(j)}^{n_{k}(k)} \in U_{j} \quad \text { for } k>K_{j} .
$$

So setting $K=\max \left\{K_{j}: j \in J\right\}$, we see that

$$
\alpha^{n_{k}(k)} \in \bigcap_{j \in J} \pi_{i(j)}^{-1}\left(U_{j}\right) \subset N \quad \text { for } k>K
$$

This verifies by definition that $\left\{\alpha^{n_{k}(k)}\right\}_{k \in \mathbb{N}}$ converges to β.
2. (Modified from Pugh Chapter 2 \#79) A space X is locally path-connected if given any $x \in X$ and any open set $U \subset X$ containing x, there is an open set $V \subset U$ containing x which is path-connected.
Let X be a topological space which is non-empty, compact, locally path-connected and connected. Prove that X is path-connected.

Solution: Let X be as stated. Let $x \in X$. By applying the definition of local pathconnectivity to $x \in X$, which is contained in the open set X, we see that there is an path-connected open set V_{x} containing $x \in X$. Then $\left\{V_{x}: x \in X\right\}$ is an open cover of X, so there is a finite subcover $\left\{V_{1}=V_{x_{1}}, \ldots, V_{n}=V_{x_{n}}\right\}$.

We claim that for every $j, k \in\{1, \ldots, n\}$, there is an list with $i(0)=j, i(m)=n$ with $V_{i(a)} \cap V_{i(a+1)}=\emptyset$ for $0 \leq a<m$.

We define an equivalence relation on $\{1, \ldots, n\}$ by $j \sim k$ defined if there is a list

$$
i(0), i(1), \ldots, i(m) \in\{1, \ldots, n\}
$$

with $i(0)=j, i(m)=k$, and $V_{i(a)} \cap V_{i(a+1)}=\emptyset$ for $0 \leq a<m$.

We claim that $j \sim k$ for each pair $j, k \in\{1, \ldots, n\}$. Suppose to the contrary, $j \nsim k$ for some j and k. Let $[j]$ and $[k]$ denote their equivalence classes. Then,

$$
A=\bigcup_{i \in[j]} V_{i} \quad \text { and } \quad B=\bigcup_{i \in[k]} V_{i}
$$

are disjoint non-empty open sets. It then follows that X is disconnected. But, since X is connected, this is a contradiction.

Now we will show that X is path-connected. Let $x, y \in X$. Then, there are $j, k \in\{1, \ldots, n\}$ so that $x \in V_{j}$ and $y \in V_{k}$. Since $j \sim k$, there is a list

$$
i(0), i(1), \ldots, i(m) \in\{1, \ldots, n\}
$$

with $i(0)=j, i(m)=k$, and $V_{i(a)} \cap V_{i(a+1)}=\emptyset$ for $0 \leq a<m$. Then we can define a sequence of points $x_{0}, x_{1}, \ldots, x_{m+1}$ so that $x_{0}=x, x_{m+1}=y$ and $x_{a+1} \in V_{i(a)} \cap V_{i(a+1)}$ for $1 \leq a<m$. Observe that for each $a \in\{0, \ldots, m\}$ we have $x_{a}, x_{a+1} \in V_{i(a)}$. So, we can define a path $\gamma:[0,1] \rightarrow X$ with

$$
\gamma\left(\frac{a}{m}\right)=x_{a} \quad \text { for } a \in\{0,1, \ldots, m\}
$$

On each interval $\left[\frac{a}{m}, \frac{a+1}{m}\right]$, we define γ to joint x_{a} to x_{a+1} via a path in $V_{i(a)}$, which is guaranteed to exist by the path-connectivity of $V_{i(a)}$.
3. Let X be a compact metric space and let \mathcal{U} be an open cover of X. Prove that there is an $\epsilon>0$ so that for every $x \in X$ there is a $U \in \mathcal{U}$ containing the open ball of radius ϵ about x. (Such an $\epsilon>0$ is called a Lebesgue number for the cover.)

Solution: For $x \in X$ and $r>0$, let $B_{r}(x)$ denote the open ball of radius r about x. For each $x \in X$, let

$$
r(x)=\sup \left\{r>0: \text { there is a } U \in \mathcal{U} \text { with } B_{r}(x) \subset U\right\} .
$$

Observe that for each $x \in X$, we have $r(x)>0$ because by definition of open cover there is at least one $U \in \mathcal{U}$ containing x and this open set must contain an open ball about x.

We also claim that $r(x)$ is continuous. In fact it is Lipschitz, which is a strengthening of uniform continuity. We will show that for each $\delta>0$, and each $x, y \in X$ we have $d(x, y)<\delta$ implies $|r(x)-r(y)|<2 \delta$. It is sufficent to show that $d(x, y)<\delta$ implies $r(y)>r(x)-2 \delta$, since the two inequalities

$$
r(y)>r(x)-2 \delta \quad \text { and } \quad r(x)>r(y)-2 \delta
$$

are equivalent to the statement $|r(x)-r(y)|<2 \delta$.
Suppose $d(x, y)<\delta$. We claim $r(y)>r(x)-2 \delta$. We can suppose $r(x)>2 \delta$ otherwise the claim is vacuous. By definition of $r(x)$, there is an open set U containing the open ball B of
radius $r(x)-\delta$ about x. Since $r(x)>2 \delta$ and $d(x, y)<\delta$ we see that $y \in B$. Observe that by the triangle inequality, the open ball B^{\prime} about y of radius $r(x)-\delta-d(x, y)$ is contained in B. So, $B^{\prime} \subset B \subset U$. We conclude by definition of $r(y)$ that

$$
r(y) \geq r(x)-\delta-d(x, y)>r(x)-2 \delta
$$

as claimed.
Now we know that $r(x)$ is a continuous function. Therefore it attains its minimum. That is, there is an $x_{0} \in X$ so that

$$
r\left(x_{0}\right) \leq r(x) \quad \text { for all } x \in X .
$$

As noted above $r\left(x_{0}\right)$ is positive. Any positive number smaller than $r\left(x_{0}\right)$ is a Lebesgue number for the cover. (In addition, $r\left(x_{0}\right)$ is the largest possible Lebesgue number for the cover. Though, $r\left(x_{0}\right)$ may not be a Lebesgue number.)
4. If A and B are subsets of \mathbb{R}, then we define

$$
A+B=\{a+b: a \in A \text { and } b \in B\} \subset \mathbb{R}
$$

Let C be the standard middle third Cantor set. Prove that $C+C=[0,2]$. (Hint: Consider ternary expansions.)

Solution: Let $t \in[0,2]$. We will find two points $x, y \in C$ so that $x+y=t$. Because x and y lie in the middle third Cantor set, they each have a ternary expansion of the form

$$
x=\sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}} \quad \text { and } \quad y=\sum_{i=1}^{\infty} \frac{y_{i}}{3^{i}}
$$

with $x_{i}, y_{i} \in\{0,2\}$ for all $i \in \mathbb{N}$.
We will determine the sequences $\left\{x_{i} \in\{0,2\}\right\}_{i \in \mathbb{N}}$ and $\left\{y_{i} \in\{0,2\}\right\}_{i \in \mathbb{N}}$ inductively so that for any integer $n \geq 0$, we have defined x_{i} and y_{i} for integers i with $1 \leq i \leq n$ so that the following equation is satisfied:

$$
\begin{equation*}
3^{n}\left(t-\sum_{i=1}^{n} \frac{x_{i}}{3^{i}}-\sum_{i=1}^{n} \frac{y_{i}}{3^{i}}\right) \in[0,2] . \tag{1}
\end{equation*}
$$

This is trivially true when $n=0$, because in this case the sums are taken to be zero, and we do not claim to have defined any of x_{i} or y_{i}.

Now suppose that equation 1 is true for some $n \geq 0$. In particular, we are supposing x_{i} and y_{i} have already been defined for each i with $1 \leq i \leq n$. Let q_{n} be the quantity in equation 1. Then we define x_{n+1} and y_{n+1} according to the following rule:

$$
\left(x_{n+1}, y_{n+1}\right)= \begin{cases}(0,0) & \text { if } q_{n} \in\left[0, \frac{2}{3}\right) \\ (2,0) & \text { if } q_{n} \in\left[\frac{2}{3}, \frac{4}{3}\right) \\ (2,2) & \text { if } q_{n} \in\left[\frac{2}{3}, \frac{4}{3}\right)\end{cases}
$$

The key point with this definition is that

$$
q_{n}-\frac{x_{n+1}}{3}-\frac{y_{n+1}}{3} \in\left[0, \frac{2}{3}\right]
$$

no matter which case we are in. Now we will verify that equation 1 is satisfied when n is replaced by $n+1$. In this case, the quantity becomes:

$$
\begin{aligned}
3^{n+1}\left(t-\sum_{i=1}^{n+1} \frac{x_{i}}{3^{i}}-\sum_{i=1}^{n+1} \frac{y_{i}}{3^{i}}\right) & =3\left(3^{n}\left(t-\sum_{i=1}^{n} \frac{x_{i}}{3^{i}}-\sum_{i=1}^{n} \frac{y_{i}}{3^{i}}\right)-\frac{x_{n+1}}{3}-\frac{y_{n+1}}{3}\right) \\
& =3\left(q_{n}-\frac{x_{n+1}}{3}-\frac{y_{n+1}}{3}\right),
\end{aligned}
$$

which lies in $[0,2]$ because $q_{n}-\frac{x_{n+1}}{3}-\frac{y_{n+1}}{3} \in\left[0, \frac{2}{3}\right]$. This verifies the inductive hypothesis.
Now we claim that t equals $x+y$, where x and y are the numbers with ternary expansion $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$. This is a consequence of equation 1, which can be written as

$$
0 \leq t-\sum_{i=1}^{n} \frac{x_{i}}{3^{i}}-\sum_{i=1}^{n} \frac{y_{i}}{3^{i}} \leq \frac{2}{3^{n}} \quad \text { for all } n \geq 0
$$

Then by the "Squeeze theorem,"

$$
t-x-y=\lim _{n \rightarrow \infty} t-\sum_{i=1}^{n} \frac{x_{i}}{3^{i}}-\sum_{i=1}^{n} \frac{y_{i}}{3^{i}}=0 .
$$

