
Math 70100: Functions of a Real Variable I
Homework 3, due Tuesday, September 23rd.

1. The Hilbert cube is the countable product H = [0, 1]N of all functions N→ [0, 1] endowed with
the product topology. Give a direct proof that the Hilbert cube is sequentially compact. That
is, given a sequence {αn ∈ H}n∈N, find a convergent subsequence. (Hint: You may want to use
a version of the Cantor diagonal argument.)

Solution: Let {αn ∈ H}n∈N be any sequence in H. We will show it has a convergent
sequence. Write αn = {ank}k∈N.

We will inductively define a subsequences of {αn ∈ H}n∈N. Let n0(m) = m. Then αm =
αn0(m). This defines a first subsequence of {αn} namely{

αn0(m)
}
m∈N,

though we are just using new notation for the same sequence. Now let us suppose that
αni−1(m) is defined for some i ∈ N. Observe that the i-th term in the sequence αni−1(m) is

a
ni−1(m)
i . The sequence {ani−1(m)

i }m∈N is a sequence in [0, 1]. By the compactness of [0, 1],
there is a convergent subsequence

{ani(m)
i }m∈N of {ani−1(m)

i }m∈N

, i.e., {ni(m) : m ∈ N} is an infinite subset of {ni−1(m) : m ∈ N}, ni−1(m) is an increasing

function N→ N, and limm→∞ a
ni(m)
i is some bi ∈ [0, 1].

Remarks: We make a couple of remarks to clarify the argument if you haven’t studied a
diagonal argument before. We have determined an integer ni(m) for each i ≥ 0 and m ∈ N.
Because each ni indexes a subsequence, the quantity ni(m) strictly increases as we fix i
and increase m, i.e., ni(m) > ni(m + 1) for all i and m. As we increment i we get a
subsequence, so ni+1(m) ≥ ni(m) for all i and m. In particular, note that the diagonal is
strictly increasing: nk+1(k + 1) > nk(k) for all k. The sequence indexed by nk(k) is the
diagonal subsequence of {αn}.

By induction, we have define a subsequence for each integer i ≥ 0, {αni(m)}m∈N}. Consider
the diagonal subsequence given by

{αnk(k)}k∈N.
We claim that this sequence converges in H. To do this, it is sufficient to show that for
each i ∈ N that

lim
k→∞

a
nk(k)
i = bi,

where bi was the limit of {ani(m)
i }i∈N as described above. (We explain this in the remark

below.) Note that limiting behavior does not change if we drop finitely many elements
of the sequence. Because for each k ≥ i, the sequence {αnk(m)}m∈N} is a subsequence of
{αni(m)}m∈N}, for each k ≥ i, there is an m so that nk(k) = ni(m). In particular, the portion
of the diagonal subsequence,

{αnk(k)}k≥i is a subsequence of {αni(m)}m∈N}.



Then because subsequences of convergent sequences have the same limits, we know

lim
k→∞

a
nk(k)
i = bi.

Remark: We have shown that {ank(k)
i }k∈N converges to bi for every i ∈ N, but we haven’t

explained that {αnk(k)}k∈N converges to β = {bi}i∈N. Let N ⊂ H be a neighborhood of
β. Note we are using the product topology, which is the coarsest topology so that the
projection functions πi : H → [0, 1] are continuous. The pre-images of open sets under
these projections form a subbasis, so there is a collection of indices {i(j) : j ∈ J} with J
a finite set and a choice of Uj ⊂ [0, 1] so that

β ∈
⋂
j∈J

π−1i(j)(Uj) ⊂ N.

Each Uj is an open set containing bi(j), so for each j ∈ J there is an integer Kj so that

a
nk(k)
i(j) ∈ Uj for k > Kj.

So setting K = max{Kj : j ∈ J}, we see that

αnk(k) ∈
⋂
j∈J

π−1i(j)(Uj) ⊂ N for k > K.

This verifies by definition that {αnk(k)}k∈N converges to β.

2. (Modified from Pugh Chapter 2 #79) A space X is locally path-connected if given any x ∈ X
and any open set U ⊂ X containing x, there is an open set V ⊂ U containing x which is
path-connected.

Let X be a topological space which is non-empty, compact, locally path-connected and con-
nected. Prove that X is path-connected.

Solution: Let X be as stated. Let x ∈ X. By applying the definition of local path-
connectivity to x ∈ X, which is contained in the open set X, we see that there is an
path-connected open set Vx containing x ∈ X. Then {Vx : x ∈ X} is an open cover of X,
so there is a finite subcover {V1 = Vx1 , . . . , Vn = Vxn}.

We claim that for every j, k ∈ {1, . . . , n}, there is an list with i(0) = j, i(m) = n with
Vi(a) ∩ Vi(a+1) = ∅ for 0 ≤ a < m.

We define an equivalence relation on {1, . . . , n} by j ∼ k defined if there is a list

i(0), i(1), . . . , i(m) ∈ {1, . . . , n}

with i(0) = j, i(m) = k, and Vi(a) ∩ Vi(a+1) = ∅ for 0 ≤ a < m.
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We claim that j ∼ k for each pair j, k ∈ {1, . . . , n}. Suppose to the contrary, j 6∼ k for
some j and k. Let [j] and [k] denote their equivalence classes. Then,

A =
⋃
i∈[j]

Vi and B =
⋃
i∈[k]

Vi

are disjoint non-empty open sets. It then follows that X is disconnected. But, since X is
connected, this is a contradiction.

Now we will show that X is path-connected. Let x, y ∈ X. Then, there are j, k ∈ {1, . . . , n}
so that x ∈ Vj and y ∈ Vk. Since j ∼ k, there is a list

i(0), i(1), . . . , i(m) ∈ {1, . . . , n}

with i(0) = j, i(m) = k, and Vi(a) ∩ Vi(a+1) = ∅ for 0 ≤ a < m. Then we can define a
sequence of points x0, x1, . . . , xm+1 so that x0 = x, xm+1 = y and xa+1 ∈ Vi(a) ∩ Vi(a+1) for
1 ≤ a < m. Observe that for each a ∈ {0, . . . ,m} we have xa, xa+1 ∈ Vi(a). So, we can
define a path γ : [0, 1]→ X with

γ(
a

m
) = xa for a ∈ {0, 1, . . . ,m}.

On each interval [ a
m
, a+1

m
], we define γ to joint xa to xa+1 via a path in Vi(a), which is

guaranteed to exist by the path-connectivity of Vi(a).

3. Let X be a compact metric space and let U be an open cover of X. Prove that there is an ε > 0
so that for every x ∈ X there is a U ∈ U containing the open ball of radius ε about x. (Such
an ε > 0 is called a Lebesgue number for the cover.)

Solution: For x ∈ X and r > 0, let Br(x) denote the open ball of radius r about x. For
each x ∈ X, let

r(x) = sup {r > 0 : there is a U ∈ U with Br(x) ⊂ U}.

Observe that for each x ∈ X, we have r(x) > 0 because by definition of open cover there is
at least one U ∈ U containing x and this open set must contain an open ball about x.

We also claim that r(x) is continuous. In fact it is Lipschitz, which is a strengthening of
uniform continuity. We will show that for each δ > 0, and each x, y ∈ X we have d(x, y) < δ
implies |r(x)− r(y)| < 2δ. It is sufficent to show that d(x, y) < δ implies r(y) > r(x)− 2δ,
since the two inequalities

r(y) > r(x)− 2δ and r(x) > r(y)− 2δ

are equivalent to the statement |r(x)− r(y)| < 2δ.

Suppose d(x, y) < δ. We claim r(y) > r(x) − 2δ. We can suppose r(x) > 2δ otherwise the
claim is vacuous. By definition of r(x), there is an open set U containing the open ball B of
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radius r(x)− δ about x. Since r(x) > 2δ and d(x, y) < δ we see that y ∈ B. Observe that
by the triangle inequality, the open ball B′ about y of radius r(x)− δ− d(x, y) is contained
in B. So, B′ ⊂ B ⊂ U . We conclude by definition of r(y) that

r(y) ≥ r(x)− δ − d(x, y) > r(x)− 2δ

as claimed.

Now we know that r(x) is a continuous function. Therefore it attains its minimum. That
is, there is an x0 ∈ X so that

r(x0) ≤ r(x) for all x ∈ X.

As noted above r(x0) is positive. Any positive number smaller than r(x0) is a Lebesgue
number for the cover. (In addition, r(x0) is the largest possible Lebesgue number for the
cover. Though, r(x0) may not be a Lebesgue number.)

4. If A and B are subsets of R, then we define

A+B = {a+ b : a ∈ A and b ∈ B} ⊂ R.

Let C be the standard middle third Cantor set. Prove that C + C = [0, 2]. (Hint: Consider
ternary expansions.)

Solution: Let t ∈ [0, 2]. We will find two points x, y ∈ C so that x + y = t. Because x
and y lie in the middle third Cantor set, they each have a ternary expansion of the form

x =
∞∑
i=1

xi
3i

and y =
∞∑
i=1

yi
3i

with xi, yi ∈ {0, 2} for all i ∈ N.

We will determine the sequences
{
xi ∈ {0, 2}

}
i∈N and

{
yi ∈ {0, 2}

}
i∈N inductively so that

for any integer n ≥ 0, we have defined xi and yi for integers i with 1 ≤ i ≤ n so that the
following equation is satisfied:

3n
(
t−

n∑
i=1

xi
3i
−

n∑
i=1

yi
3i

)
∈ [0, 2]. (1)

This is trivially true when n = 0, because in this case the sums are taken to be zero, and
we do not claim to have defined any of xi or yi.

Now suppose that equation 1 is true for some n ≥ 0. In particular, we are supposing xi and
yi have already been defined for each i with 1 ≤ i ≤ n. Let qn be the quantity in equation
1. Then we define xn+1 and yn+1 according to the following rule:

(xn+1, yn+1) =


(0, 0) if qn ∈ [0, 2

3
).

(2, 0) if qn ∈ [2
3
, 4
3
).

(2, 2) if qn ∈ [2
3
, 4
3
).
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The key point with this definition is that

qn −
xn+1

3
− yn+1

3
∈ [0,

2

3
]

no matter which case we are in. Now we will verify that equation 1 is satisfied when n is
replaced by n+ 1. In this case, the quantity becomes:

3n+1
(
t−
∑n+1

i=1
xi

3i
−
∑n+1

i=1
yi
3i

)
= 3

(
3n
(
t−
∑n

i=1
xi

3i
−
∑n

i=1
yi
3i

)
− xn+1

3
− yn+1

3

)
= 3(qn − xn+1

3
− yn+1

3
),

which lies in [0, 2] because qn − xn+1

3
− yn+1

3
∈ [0, 2

3
]. This verifies the inductive hypothesis.

Now we claim that t equals x + y, where x and y are the numbers with ternary expansion
{xi} and

{
yi}. This is a consequence of equation 1, which can be written as

0 ≤ t−
n∑

i=1

xi
3i
−

n∑
i=1

yi
3i
≤ 2

3n
for all n ≥ 0.

Then by the “Squeeze theorem,”

t− x− y = lim
n→∞

t−
n∑

i=1

xi
3i
−

n∑
i=1

yi
3i

= 0.
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