Math 70100: Functions of a Real Variable |
Homework 3, due Tuesday, September 23rd.

1. The Hilbert cube is the countable product H = [0, 1]" of all functions N — [0, 1] endowed with
the product topology. Give a direct proof that the Hilbert cube is sequentially compact. That
is, given a sequence {a" € H },cn, find a convergent subsequence. (Hint: You may want to use
a version of the Cantor diagonal argument.)

Solution: Let {a™ € H},en be any sequence in H. We will show it has a convergent
sequence. Write o™ = {a}} }ren-

We will inductively define a subsequences of {a™ € H},en. Let ng(m) = m. Then o™ =
o™ This defines a first subsequence of {a,,} namely

{ a™ ) }mEN ’

though we are just using new notation for the same sequence. Now let us suppose that
a™=1M) is defined for some i € N. Observe that the i-th term in the sequence a™-1(™ is
a?"‘l(m). The sequence {a?i_l(m)}meN is a sequence in [0, 1]. By the compactness of [0, 1],

there is a convergent subsequence

(@™ en of  {al" "™}, en

,i.e, {n;(m) : m € N} is an infinite subset of {n;,_1(m) : m € N}, n;_;(m) is an increasing
™) is some b; € [0, 1].

i

function N — N, and lim,,,_,. @

Remarks: We make a couple of remarks to clarify the argument if you haven’t studied a
diagonal argument before. We have determined an integer n;(m) for each ¢ > 0 and m € N.
Because each n; indexes a subsequence, the quantity n;(m) strictly increases as we fix i
and increase m, i.e., n;(m) > n;(m + 1) for all ¢ and m. As we increment i we get a
subsequence, so n;41(m) > n;(m) for all ¢ and m. In particular, note that the diagonal is
strictly increasing: ngiq1(k + 1) > ng(k) for all k. The sequence indexed by ng(k) is the
diagonal subsequence of {a™}.

By induction, we have define a subsequence for each integer i > 0, {a"™(™},,cy}. Consider
the diagonal subsequence given by

{ank(k)}keN

We claim that this sequence converges in H. To do this, it is sufficient to show that for
each ¢ € N that

where b; was the limit of {a]"™ };en as described above. (We explain this in the remark
below.) Note that limiting behavior does not change if we drop finitely many elements
of the sequence. Because for each k > i, the sequence {a™(™}, .} is a subsequence of
{am(mY, o}, for each k > i, there is an m so that ng (k) = n;(m). In particular, the portion
of the diagonal subsequence,

{Oénk(k)}kzl‘ is a subsequence of {a™ (™}, cx}.




Then because subsequences of convergent sequences have the same limits, we know

lim a?k(k) =0;.
k—o0

Remark: We have shown that {a?’“(k)}keN converges to b; for every i € N, but we haven’t
explained that {a™®}, . converges to 8 = {b;}ien. Let N C H be a neighborhood of
B. Note we are using the product topology, which is the coarsest topology so that the
projection functions m; : H — [0,1] are continuous. The pre-images of open sets under
these projections form a subbasis, so there is a collection of indices {i(j) : j € J} with J
a finite set and a choice of U; C [0, 1] so that

Be () m (U CN.

Each Uj is an open set containing b;(;), so for each j € J there is an integer K so that

a?(’;.gk) eU; fork>K;.

So setting K = max{K; : j € J}, we see that

k) m Wi*(;)(Uj) CN fork>K.
jeJ

This verifies by definition that {a™®)},cx converges to 3.

2. (Modified from Pugh Chapter 2 #79) A space X is locally path-connected if given any x € X
and any open set U C X containing x, there is an open set V' C U containing = which is
path-connected.

Let X be a topological space which is non-empty, compact, locally path-connected and con-
nected. Prove that X is path-connected.

Solution: Let X be as stated. Let x € X. By applying the definition of local path-
connectivity to x € X, which is contained in the open set X, we see that there is an
path-connected open set V, containing « € X. Then {V, : x € X} is an open cover of X,
so there is a finite subcover {V; =V, ,...,V, =V, }.

We claim that for every j,k € {1,...,n}, there is an list with i(0) = j, i(m) = n with
Vi) N Vitay1y =0 for 0 < a < m.

We define an equivalence relation on {1,...,n} by j ~ k defined if there is a list
i(0),i(1),...,i(m) € {1,...,n}

with i(0) = j, i(m) = k, and Vi) N Viay1) =0 for 0 < a < m.
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We claim that j ~ k for each pair j,k € {1,...,n}. Suppose to the contrary, j % k for
some j and k. Let [j] and [k] denote their equivalence classes. Then,

A=V and B= )V

i€ly] i€[k]

are disjoint non-empty open sets. It then follows that X is disconnected. But, since X is
connected, this is a contradiction.

Now we will show that X is path-connected. Let 2,y € X. Then, there are j, k € {1,...,n}
so that x € V; and y € V}.. Since j ~ k, there is a list

i(0),i(1),...,i(m) € {1,....n}

with #(0) = 7, i(m) = k, and Vi) N Vi) = 0 for 0 < a < m. Then we can define a
sequence of points xg, 1, ..., Ty so that o = z, 241 = y and 2411 € Vi) N Viay) for
1 < a < m. Observe that for each a € {0,...,m} we have z,, 2,41 € Viq). So, we can
define a path 7 : [0,1] — X with

a

Dy g, f 0,1,...,m}.
’y(m) T ora € { m}

On each interval [%, %1], we define v to joint z, to w,41 via a path in Vjq), which is

guaranteed to exist by the path-connectivity of Vj.

3. Let X be a compact metric space and let & be an open cover of X. Prove that there is an € > 0
so that for every = € X there is a U € U containing the open ball of radius € about z. (Such
an € > 0 is called a Lebesque number for the cover.)

Solution: For z € X and r > 0, let B,(z) denote the open ball of radius r about x. For
each x € X, let

r(z) =sup {r >0 : thereisa U € U with B,(z) C U}.

Observe that for each € X, we have r(z) > 0 because by definition of open cover there is
at least one U € U containing z and this open set must contain an open ball about .

We also claim that r(z) is continuous. In fact it is Lipschitz, which is a strengthening of
uniform continuity. We will show that for each § > 0, and each z,y € X we have d(z,y) < ¢
implies |r(z) — r(y)| < 24. It is sufficent to show that d(x,y) < § implies r(y) > r(z) — 24,
since the two inequalities

r(y) >r(z) —20 and 7r(z) > r(y) —20
are equivalent to the statement |r(z) — r(y)| < 29.

Suppose d(z,y) < 6. We claim r(y) > r(z) — 20. We can suppose 7(z) > 2J otherwise the
claim is vacuous. By definition of r(z), there is an open set U containing the open ball B of
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radius r(x) — § about x. Since r(z) > 26 and d(z,y) < 0 we see that y € B. Observe that
by the triangle inequality, the open ball B” about y of radius r(x) — § — d(z, y) is contained
in B. So, B C B C U. We conclude by definition of r(y) that

r(y) >r(z) — 6 —d(z,y) > r(z) —26
as claimed.

Now we know that r(z) is a continuous function. Therefore it attains its minimum. That
is, there is an xg € X so that

r(zg) <r(x) forallz e X.

As noted above r(xg) is positive. Any positive number smaller than r(z¢) is a Lebesgue
number for the cover. (In addition, r(z) is the largest possible Lebesgue number for the
cover. Though, r(xy) may not be a Lebesgue number.)

4. If A and B are subsets of R, then we define
A+B={a+b: ac€Aandbe B} CR.

Let C' be the standard middle third Cantor set. Prove that C'+ C' = [0,2]. (Hint: Consider
ternary expansions.)

Solution: Let t € [0,2]. We will find two points z,y € C so that x +y = t. Because x
and y lie in the middle third Cantor set, they each have a ternary expansion of the form
N N U
x—Z§ and y= )3
i=1 =1
with x;,y; € {0,2} for all i € N.

We will determine the sequences {xZ e {0, 2}}ieN and {yi € {0, 2}}ZEN inductively so that
for any integer n > 0, we have defined x; and y; for integers i with 1 < ¢ < n so that the
following equation is satisfied:

n — ; - Yi
3@—§:§—§kwemﬂ. (1)
i=1 i=1
This is trivially true when n = 0, because in this case the sums are taken to be zero, and
we do not claim to have defined any of x; or y;.

Now suppose that equation [1]is true for some n > 0. In particular, we are supposing z; and
y; have already been defined for each ¢ with 1 <7 < n. Let ¢, be the quantity in equation
Then we define z,,1 and vy, according to the following rule:

(0,0) if g, € [0, 2).

(xn—i-lv yn+1) = (27 0) if qn € [ga §)
(2,2) ifgne[33).
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The key point with this definition is that

Tn+1 Yn+1 2
ok 0,
q 3 3 [ 3]

no matter which case we are in. Now we will verify that equation [1} is satisfied when n is
replaced by n + 1. In this case, the quantity becomes:

P - s - B = (3 - T B - T ) - B )

= 3l — 55 = 5,

which lies in [0, 2] because g, — “5* — ¥22 < [0, 2]. This verifies the inductive hypothesis.

Now we claim that ¢ equals x 4 y, where x and y are the numbers with ternary expansion
{z;} and {y;}. This is a consequence of equation |1} which can be written as

T =Y 2
0<t— — — Z < — foralln>0.
- Z 31 4 3z — Sn -
=1 =1
Then by the “Squeeze theorem,”
Chmt ST N
ooy fmt-d g0 5 =0
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