
Math 70100: Functions of a Real Variable I
Homework 2, due Wednesday, September 17th.

1. (Modified from Folland 4.1.13) Suppose X is a topological space and A ⊂ X is dense. Prove
that if U ⊂ X is open, then Ū = U ∩ A, where ·̄ denotes closure.

Solution: Let B ⊂ X. Recall B̄ = X r
(
Int(X rB)

)
. By definition of the interior, then

x 6∈ B̄ if and only if there is an open set V ⊂ X with x ∈ V and V ∩ B = ∅. Thus, to see
that Ū = U ∩ A, it suffices to check that for any open set V ⊂ X, we have V ∩U = ∅ if and
only if V ∩ U ∩ A = ∅. One way is clear: if V ∩ U = ∅, then clearly V ∩ U ∩ A = ∅. Now
suppose that V ∩ U 6= ∅. Then V ∩ U is open and non-empty, so by density of A, there is
an a ∈ V ∩ U ∩ A. In particular, V ∩ U ∩ A is non-empty as required.

2. (From Zakeri’s Homework 2) Give a direct proof that the interval [0, 1] is compact.
(Hint: Let U be an open cover. Define

S = {x ∈ [0, 1] : [0, x] is covered by finitely many U ∈ U}.)

Prove that S = [0, 1].)

Solution: Let t = sup S. We claim that t ∈ S. Since t ∈ [0, 1], there is an open set U∗ ∈ U
so that t ∈ U∗. Because U∗ is open and contains t, there is an ε > 0 so that s ∈ U∗ whenever
t− ε < s < t. Then because t = sup S, there is an s ∈ S with t− ε < s < t. Then [0, s] has
a finite covering by some U1, . . . , Un ∈ U . Now observe that {U∗} ∪ {Ui : 1 ≤ i ≤ n} is a
finite covering of [0, t], so t ∈ S as claimed.

Again let t = sup S. Now we claim that t = 1. Suppose to the contrary that t < 1. Then,
[0, t] has a finite covering by some V1, . . . , Vm ∈ U with [0, t] ⊂

⋃m
i=1 Vi. But then all of⋃m

i=1 Vi is covered by this finite collection, and
⋃m
i=1 Vi contains t and since it is open also

contains real numbers bigger than t. But this contradicts the definition of t as sup S. We
conclude that t = 1. From the prior paragraph, we know that 1 ∈ S, so by definition of S,
the interval [0, 1] is covered by finitely many elements of U .

3. (Modified from Lang II.5.1a) Let X and Y be compact Hausdorff topological spaces. Prove
that f : X → Y is continuous if and only if its graph is closed in X ×Y . (The graph of f is the
set

Γ = {(x, y) ∈ X × Y : y = f(x)}.)

(Remark: More generally the result is true if X is just a topological space and Y is a compact
Hausdorff space. This is the closed graph theorem.)
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Solution: Remark 1: In solving the problem, it may be useful to note that the statement
fails in the absence of compactness. For example, consider the function f : R → R given
by f(x) = 1/x if x < 0 and f(x) = 0 if x ≥ 0. This function has a closed graph but is not
continuous.

Let X and Y be compact Hausdorff spaces. Let f : X → Y be a function and let Γ be its
graph.

First suppose that f is continuous. We will show its graph Γ is closed by showing its
compliment is open. To show (X × Y ) r Γ is open, it is sufficient to show that for any
point (x, y) ∈ (X × Y ) r Γ, there is an open set U ⊂ X × Y so that (x, y) ∈ U and
U ∩ Γ = ∅. Choose (x, y) ∈ (X × Y ) r Γ. Then y 6= f(x). Then since Y is Hausdorff,
there are disjoint open sets V1 and V2 so that f(x) ∈ V1 and y ∈ V2. Continuity of f implies
that f−1(V1) ⊂ X is an open neighborhood of x. Then for any point x′ ∈ f−1(V1), we
have f(x) ∈ V1. In particular the no point in f−1(V1) has an image in V2. It follows that
f−1(V1)× V2 is disjoint from the graph Γ. Further, the product of open sets is open. This
verifies that the compliment of Γ is open and therefore that Γ is closed.

Now suppose that the graph Γ is closed. Take V ⊂ Y open. We will show that f−1(V ) is
open. Fix some x ∈ f−1(V ) so that f(x) ∈ V . It is sufficient to find a neighborhood A of x
so that f(a) ⊂ V for a ∈ A. Since Γ is closed, for each point (p, q) ∈ (X ×Y )rΓ, there are
open sets Ap,q ⊂ X and Bp,q ⊂ Y with p ∈ Ap,q, q ∈ Bp,q and (Ap,q × Bp,q) ∩ Γ = ∅. (This
uses the fact that sets of this type form a basis for the product topology.) In particular,
make a choice of such sets Ax,y and Bx,y for each pair of points (x, y) where x ∈ f−1(V ) is
fixed as above and y 6∈ V . Observe that Y r V is a closed subset of a compact space and
therefore compact. The sets {Bx,y : y 6∈ V } form an open cover of Y r V , so there is a
finite subcover of the form

{Bx,y1 , . . . , Bx,yn}

where y1, . . . , yn is a list of elements of Y r V . Now set

A = Ax,y1 ∩ . . . ∩ Ax,yn .

Observe that x ∈ A because x ∈ Ax,y for all y 6∈ V . We claim that if a ∈ A then
f(a) ∈ V , which verifies the continuity of f because A is open and contains x. Suppose to
the contrary that f(a) 6∈ V . Then because we have a finite cover of Y r V , f(a) ∈ Bx,yi for
some i ∈ {1, . . . , n}. Then a ∈ Ax,yi and f(a) ∈ Bx,yi , but Ax,yi × Bx,yi was defined to be
disjoint from Γ. This contradicts the observation that

(
a, f(a)

)
lies in the graph.

4. (Modified from Lang II.5.1b) A function f : X → Y between metric spaces is uniformly contin-
uous if for all ε > 0, there is a δ > 0 so that dX(x1, x2) < δ implies dY

(
f(x1), f(x2)

)
< ε for all

x1, x2 ∈ X.

Let Y be a complete metric space and X be a metric space. Let A ⊂ X. Let f : A → Y be
uniformly continuous, and let Ā ⊂ X denote the closure of A. Show that there exists a unique
extension of f to a continuous map f̄ : Ā→ Y , and show that f̄ is uniformly continuous. (You
may assume that X and Y are subsets of Banach spaces if you wish, in order to write the
distance function in terms of the absolute value sign.)
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Solution: Remark: The main idea here is that uniformly continuous functions send
Cauchy sequences to Cauchy sequences. Also note that all convergent sequences are Cauchy.

Suppose as above that X and Y are metric spaces with Y complete. Let A ⊂ X and let
f : A→ Y be uniformly continuous.

We first need to define our extension f̄ at each point a ∈ ĀrA. For each such a, we choose
an a sequence of points {xn ∈ A} which converge to a. If we want f̄ to be continuous at a,
then the sequence {f(xn)} must converge and f̄(a) must be the limit. (Otherwise we get a
contradiction to the definition of continuity of f̄ at a.) This verifies uniqueness of f̄ , since
the values of f̄ at each point in ĀrA are uniquely determined. Now we will check that the
sequence {f(xn)} converges. Because Y is complete, it is sufficient to check that {f(xn)} is
Cauchy. Observe that because {xn} converges to a, this sequence is Cauchy. Now we will
verify that {f(xn)} is Cauchy. Choose ε > 0. Then, because f is uniformly continuous,
there is a δ > 0 so that dX(x, x′) < δ implies dY

(
f(x), f(x′)

)
< ε. Then because {xn} is

Cauchy, there is an N so that m,n > N implies dX(xn, xm) < δ. Taken together we see
that m,n > N implies dY

(
f(xm), f(xn)

)
< ε, as required.

It remains to check that f̄ is uniformly continuous. Choose ε > 0. Then because f is
uniformly continuous, there is a δ > 0 so that for each a, b ∈ A with dX(a, b) < δ, we have
dY
(
f(a), f(b)

)
< ε

3
. Now let c, d ∈ Ā with dX(c, d) < δ

3
. We claim that dY

(
f̄(c), f̄(d)

)
< ε,

which will verify the definition of uniform continuity. Suppose c ∈ Ār A. Above we chose
a sequence {xn ∈ A} converging to c, and we know {f(xn)} converges to f̄(c). So, there is
an N so that n > N implies dX(c, xn) < δ

3
and dY

(
f̄(c), f(xn)

)
< ε

3
. Set a = xn ∈ A for

some n > N . Then

dX(c, a) <
δ

3
and dY

(
f̄(c), f(a)

)
<
ε

3
.

Also suppose that d ∈ Ār A. In a similar manner, we find b ∈ A with

dX(d, b) <
δ

3
and dY

(
f̄(d), f(b)

)
<
ε

3
.

Now observe that by the triangle inequality,

dX(a, b) ≤ dX(a, c) + dX(c, d) + dX(d, b) =
δ

3
+
δ

3
+
δ

3
= δ.

So, by our use of uniform continuity of f , we see that dY
(
f(a), f(b)

)
< ε

3
. Then,

dY
(
f̄(c), f̄(d)

)
≤ dY

(
f̄(c), f(a)

)
+ dY

(
f(a), f(b)

)
+ dY

(
f(b), f̄(d)

)
<
ε

3
+
ε

3
+
ε

3
= ε.

This verifies that dX(c, d) < δ
3

implies dY
(
f̄(c), f̄(d)

)
< ε in the case when c, d ∈ Ā r A.

Simpler arguments can be used when c ∈ A or d ∈ A. In the case when c ∈ A for instance,
the above inequalities all hold with a taken to equal c.

5. (Lang II.5.12) Let U be an open subset of a normed vector space. Show that U is connected
if and only if U is path (or arcwise) connected. (Recall that if a topological space is path con-
nected, then it is connected. See Proposition 2.7. You do not need to prove this.) (Hint: define
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the notion of a path-component, which is analogous to the notion of connected component.)

Solution: Suppose that U is not path connected. We will show that U is not connected.

We define a relation on U . Let p, q ∈ U , and say they are joined by a path if there is a path
γ : [0, 1] → U with γ(0) = p and γ(1) = q. This is an equivalence relation: It is reflexive
because the constant function γ(t) = p is a path. It is symmetric because if γ(t) is a path,
then so is γ(1− t). It is transitive because if γ joins p to q and η joins q to r, then the path

t 7→

{
γ(2t) 0 ≤ t ≤ 1

2

η(2t− 1) 1
2
≤ t ≤ 1

joins p to r.

Because this is an equivalence relation, it partitions U into equivalence classes. (The equiv-
alence class of p ∈ U is called the path-component of p.) For p ∈ P , let [p] denote the
path-component of p. There are at least two equivalence classes because U is not path con-
nected. Endow the collection {[p] : p ∈ U} with the discrete topology. We claim that the
map p 7→ [p] is continuous. This implies that U is disconnected, since the image contains
at least two distinct points and the continuous image of a connected set in a discrete space
can only consist of one point. See Proposition 2.2.

To see that p 7→ [p] is continuous, take an arbitrary point q ∈ U and consider its path-
component [q]. We claim that [q] it contains an open neighborhood about q. This is
equivalent to saying that p 7→ [p] is continuous at q, and because we took q to be arbitrary
this implies that p 7→ [p] is open. Since q ∈ U , U is open, and open balls form a basis for
the topology, there is an ε > 0 so that the open ball centered at q, Bε(q), is a subset of U .
We claim that the whole ball Bε(q) is in the same path component as q. Choose r ∈ Bε(q)
distinct from q. Then we can define

γ(t) = (1− t)q + tr.

Clearly γ joins q to r and γ(0, 1) ⊂ Bε(q) ⊂ U . It follows that [r] = [q]. Because r ∈ Bε(q)
was arbitrary, we conclude that [r] = [q] for each r ∈ Bε(q). This verifies that the preimage
of [q] contains Bε(q) as required to verify the continuity of p 7→ [p] at q.

Remark: To be pedantic, we should have shown that γ(t) is continuous. Choose t0 ∈ [0, 1]
and ε > 0. Observe that

γ(t)− γ(t0) = (t− t0)(r − q).

So, setting δ = ε
|r−q| , when |t− t0| < δ, we have

|γ(t)− γ(t0)| = |(t− t0)(r − q)| = |t− t0| · |r − q| < δ · |r − q| = ε.

This verifies the metric definition of continuity.

6. The closed topologist’s sine curve is

T =
{

(x, sin
π

x
) : 0 < x ≤ 1

}
∪ {(0, y) : y ∈ [−1, 1]}.
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Show that T is connected but not path connected.

Solution: We begin by showing T is connected. If T were not connected, then it could be
split (non-trivially) into connected components. Observe that the subsets

A = {(0, y) : y ∈ [−1, 1]} and B =
{

(x, sin
π

x
) : 0 < x ≤ 1

}
.

are both connected since they are continuous images of intervals. It follows that the only
possible connected components of T which are proper subsets of T are A and B. So, if T were
disconnected, it would have to be that A and B are disjoint open subsets. We will show that A is
not in fact open in T . Recall that in the subspace topology on T that open sets are intersections
of open sets in R2 with T . Therefore, to prove that A is not open in T , it suffices to show that
there is no open set U ⊂ R2 so that U ∩ T = A. Let U ⊂ R2 be any open set containing A.
Then in particular, U contains the point (0, 0). Then because U is open, there is an ε > 0 so
that (x, 0) ∈ U whenever x < ε. Then we can choose a integer n ≥ 1 so that 1

n
< ε. Then

(
1

n
, sin

π

1/n
) = (

1

n
, sinnπ) = (

1

n
, 0
)
∈ U ∩B.

We conclude that any open set containing A also contains points in B, so A is not open. We
conclude that T is connected, because there is no way to non-trivially split T into connected
components.

Now we will show T is not path connected. If it was path connected, then there would be a
continuous γ : [0, 1]→ T with γ(0) = (1, 0) and γ(1) = (0, 1). We now suppose such a γ exists,
and we will draw a contradiction. Consider the continuous projection πx : (x, y) 7→ x. Since γ
is continuous, the composition πx ◦ γ is continuous. We conclude that J = (πx ◦ γ)−1({0}) is
closed. Note also that it contains 1, since γ(1) = (0, 1). Set t0 = inf J . Since J is closed and
non-empty, t0 is well defined and lies in J .

Observe that for 0 ≤ t < t0, πx ◦γ(t) > 0 while πx ◦γ(t0) = 0. Since πx ◦γ is continuous and
[0, t0] is connected with πx◦γ(0) = 1 and πx◦γ(t0) = 0, it must be that πx◦γ([0, t0]) = [0, 1]. So
in particular, there is a sequence {sn ∈ [0, t0]} with πx ◦γ(sn) = 1

n
. Observe that by definition of

T , we have γ(sn) = ( 1
n
, 0). Then by (sequential) compactness of γ([0, t0]), there is an s ∈ [0, t0]

so that

γ(s) = lim
n→∞

γ(sn) = lim
n→∞

(
1

n
, 0) = (0, 0).

Recall in the first sentence of the paragraph we stated that t0 was the only point in [0, t0] where
πx ◦ γ(t) = 0. We conclude that s = t0 and γ(t0) = (0, 0). We now make a similar argument
for a different sequence. Observe that there is a sequence {rn ∈ [0, t0]} with πx ◦ γ(sn) = 2

4n+1
.

Again by compactness, there is an r ∈ [0, t0] so that

γ(r) = lim
n→∞

γ(rn) = lim
n→∞

(
2

4n+ 1
, sin

(4n+ 1)π

2
) = lim

n→∞
(

2

4n+ 1
, 1) = (0, 1).

Because πx ◦ γ(r) = 0, we again conclude that r = t0 and therefore γ(t0) = (0, 1). We have
shown γ(t0) = (0, 0) and γ(t0) = (0, 1), which is a contradiction.
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