Math 70100: Functions of a Real Variable I Homework 2, due Wednesday, September 17th.

1. (Modified from Folland 4.1.13) Suppose X is a topological space and $A \subset X$ is dense. Prove that if $U \subset X$ is open, then $\overline{U} = \overline{U \cap A}$, where $\overline{\cdot}$ denotes closure.

Solution: Let $B \subset X$. Recall $\overline{B} = X \setminus (\operatorname{Int}(X \setminus B))$. By definition of the interior, then $x \notin \overline{B}$ if and only if there is an open set $V \subset X$ with $x \in V$ and $V \cap B = \emptyset$. Thus, to see that $\overline{U} = \overline{U \cap A}$, it suffices to check that for any open set $V \subset X$, we have $V \cap U = \emptyset$ if and only if $V \cap U \cap A = \emptyset$. One way is clear: if $V \cap U = \emptyset$, then clearly $V \cap U \cap A = \emptyset$. Now suppose that $V \cap U \neq \emptyset$. Then $V \cap U$ is open and non-empty, so by density of A, there is an $a \in V \cap U \cap A$. In particular, $V \cap U \cap A$ is non-empty as required.

2. (From Zakeri's Homework 2) Give a direct proof that the interval [0, 1] is compact. (*Hint:* Let \mathcal{U} be an open cover. Define

 $S = \{x \in [0, 1] : [0, x] \text{ is covered by finitely many } U \in \mathcal{U}\}.$

Prove that S = [0, 1].)

Solution: Let $t = \sup S$. We claim that $t \in S$. Since $t \in [0, 1]$, there is an open set $U_* \in \mathcal{U}$ so that $t \in U_*$. Because U_* is open and contains t, there is an $\epsilon > 0$ so that $s \in U_*$ whenever $t - \epsilon < s < t$. Then because $t = \sup S$, there is an $s \in S$ with $t - \epsilon < s < t$. Then [0, s] has a finite covering by some $U_1, \ldots, U_n \in \mathcal{U}$. Now observe that $\{U_*\} \cup \{U_i : 1 \le i \le n\}$ is a finite covering of [0, t], so $t \in S$ as claimed.

Again let $t = \sup S$. Now we claim that t = 1. Suppose to the contrary that t < 1. Then, [0,t] has a finite covering by some $V_1, \ldots, V_m \in \mathcal{U}$ with $[0,t] \subset \bigcup_{i=1}^m V_i$. But then all of $\bigcup_{i=1}^m V_i$ is covered by this finite collection, and $\bigcup_{i=1}^m V_i$ contains t and since it is open also contains real numbers bigger than t. But this contradicts the definition of t as $\sup S$. We conclude that t = 1. From the prior paragraph, we know that $1 \in S$, so by definition of S, the interval [0, 1] is covered by finitely many elements of \mathcal{U} .

3. (Modified from Lang II.5.1a) Let X and Y be compact Hausdorff topological spaces. Prove that $f: X \to Y$ is continuous if and only if its graph is closed in $X \times Y$. (The graph of f is the set

$$\Gamma = \{ (x, y) \in X \times Y : y = f(x) \}. \}$$

(*Remark:* More generally the result is true if X is just a topological space and Y is a compact Hausdorff space. This is the *closed graph theorem*.)

Solution: Remark 1: In solving the problem, it may be useful to note that the statement fails in the absence of compactness. For example, consider the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 1/x if x < 0 and f(x) = 0 if $x \ge 0$. This function has a closed graph but is not continuous.

Let X and Y be compact Hausdorff spaces. Let $f: X \to Y$ be a function and let Γ be its graph.

First suppose that f is continuous. We will show its graph Γ is closed by showing its compliment is open. To show $(X \times Y) \smallsetminus \Gamma$ is open, it is sufficient to show that for any point $(x, y) \in (X \times Y) \backsim \Gamma$, there is an open set $U \subset X \times Y$ so that $(x, y) \in U$ and $U \cap \Gamma = \emptyset$. Choose $(x, y) \in (X \times Y) \backsim \Gamma$. Then $y \neq f(x)$. Then since Y is Hausdorff, there are disjoint open sets V_1 and V_2 so that $f(x) \in V_1$ and $y \in V_2$. Continuity of f implies that $f^{-1}(V_1) \subset X$ is an open neighborhood of x. Then for any point $x' \in f^{-1}(V_1)$, we have $f(x) \in V_1$. In particular the no point in $f^{-1}(V_1)$ has an image in V_2 . It follows that $f^{-1}(V_1) \times V_2$ is disjoint from the graph Γ . Further, the product of open sets is open. This verifies that the compliment of Γ is open and therefore that Γ is closed.

Now suppose that the graph Γ is closed. Take $V \subset Y$ open. We will show that $f^{-1}(V)$ is open. Fix some $x \in f^{-1}(V)$ so that $f(x) \in V$. It is sufficient to find a neighborhood A of xso that $f(a) \subset V$ for $a \in A$. Since Γ is closed, for each point $(p,q) \in (X \times Y) \setminus \Gamma$, there are open sets $A_{p,q} \subset X$ and $B_{p,q} \subset Y$ with $p \in A_{p,q}$, $q \in B_{p,q}$ and $(A_{p,q} \times B_{p,q}) \cap \Gamma = \emptyset$. (This uses the fact that sets of this type form a basis for the product topology.) In particular, make a choice of such sets $A_{x,y}$ and $B_{x,y}$ for each pair of points (x, y) where $x \in f^{-1}(V)$ is fixed as above and $y \notin V$. Observe that $Y \setminus V$ is a closed subset of a compact space and therefore compact. The sets $\{B_{x,y} : y \notin V\}$ form an open cover of $Y \setminus V$, so there is a finite subcover of the form

$$\{B_{x,y_1},\ldots,B_{x,y_n}\}$$

where y_1, \ldots, y_n is a list of elements of $Y \smallsetminus V$. Now set

$$A = A_{x,y_1} \cap \ldots \cap A_{x,y_n}.$$

Observe that $x \in A$ because $x \in A_{x,y}$ for all $y \notin V$. We claim that if $a \in A$ then $f(a) \in V$, which verifies the continuity of f because A is open and contains x. Suppose to the contrary that $f(a) \notin V$. Then because we have a finite cover of $Y \setminus V$, $f(a) \in B_{x,y_i}$ for some $i \in \{1, \ldots, n\}$. Then $a \in A_{x,y_i}$ and $f(a) \in B_{x,y_i}$, but $A_{x,y_i} \times B_{x,y_i}$ was defined to be disjoint from Γ . This contradicts the observation that (a, f(a)) lies in the graph.

4. (Modified from Lang II.5.1b) A function $f: X \to Y$ between metric spaces is uniformly continuous if for all $\epsilon > 0$, there is a $\delta > 0$ so that $d_X(x_1, x_2) < \delta$ implies $d_Y(f(x_1), f(x_2)) < \epsilon$ for all $x_1, x_2 \in X$.

Let Y be a complete metric space and X be a metric space. Let $A \subset X$. Let $f : A \to Y$ be uniformly continuous, and let $\overline{A} \subset X$ denote the closure of A. Show that there exists a unique extension of f to a continuous map $\overline{f} : \overline{A} \to Y$, and show that \overline{f} is uniformly continuous. (You may assume that X and Y are subsets of Banach spaces if you wish, in order to write the distance function in terms of the absolute value sign.) Solution: *Remark:* The main idea here is that uniformly continuous functions send Cauchy sequences to Cauchy sequences. Also note that all convergent sequences are Cauchy.

Suppose as above that X and Y are metric spaces with Y complete. Let $A \subset X$ and let $f: A \to Y$ be uniformly continuous.

We first need to define our extension \bar{f} at each point $a \in \bar{A} \setminus A$. For each such a, we choose an a sequence of points $\{x_n \in A\}$ which converge to a. If we want \overline{f} to be continuous at a, then the sequence $\{f(x_n)\}$ must converge and $\overline{f}(a)$ must be the limit. (Otherwise we get a contradiction to the definition of continuity of f at a.) This verifies uniqueness of f, since the values of f at each point in $A \setminus A$ are uniquely determined. Now we will check that the sequence $\{f(x_n)\}$ converges. Because Y is complete, it is sufficient to check that $\{f(x_n)\}$ is Cauchy. Observe that because $\{x_n\}$ converges to a, this sequence is Cauchy. Now we will verify that $\{f(x_n)\}$ is Cauchy. Choose $\epsilon > 0$. Then, because f is uniformly continuous, there is a $\delta > 0$ so that $d_X(x, x') < \delta$ implies $d_Y(f(x), f(x')) < \epsilon$. Then because $\{x_n\}$ is Cauchy, there is an N so that m, n > N implies $d_X(x_n, x_m) < \delta$. Taken together we see that m, n > N implies $d_Y(f(x_m), f(x_n)) < \epsilon$, as required.

It remains to check that \overline{f} is uniformly continuous. Choose $\epsilon > 0$. Then because f is uniformly continuous, there is a $\delta > 0$ so that for each $a, b \in A$ with $d_X(a, b) < \delta$, we have $d_Y(f(a), f(b)) < \frac{\epsilon}{3}$. Now let $c, d \in \overline{A}$ with $d_X(c, d) < \frac{\delta}{3}$. We claim that $d_Y(\overline{f}(c), \overline{f}(d)) < \epsilon$, which will verify the definition of uniform continuity. Suppose $c \in \overline{A} \setminus A$. Above we chose a sequence $\{x_n \in A\}$ converging to c, and we know $\{\underline{f}(x_n)\}$ converges to $\overline{f}(c)$. So, there is an N so that n > N implies $d_X(c, x_n) < \frac{\delta}{3}$ and $d_Y(\tilde{f}(c), f(x_n)) < \frac{\epsilon}{3}$. Set $a = x_n \in A$ for some n > N. Then

$$d_X(c,a) < \frac{\delta}{3}$$
 and $d_Y(\bar{f}(c), f(a)) < \frac{\epsilon}{3}$

Also suppose that $d \in \overline{A} \setminus A$. In a similar manner, we find $b \in A$ with

$$d_X(d,b) < \frac{\delta}{3}$$
 and $d_Y(\bar{f}(d), f(b)) < \frac{\epsilon}{3}$.

Now observe that by the triangle inequality,

$$d_X(a,b) \le d_X(a,c) + d_X(c,d) + d_X(d,b) = \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} = \delta.$$

So, by our use of uniform continuity of f, we see that $d_Y(f(a), f(b)) < \frac{\epsilon}{3}$. Then,

$$d_Y\big(\bar{f}(c),\bar{f}(d)\big) \le d_Y\big(\bar{f}(c),f(a)\big) + d_Y\big(f(a),f(b)\big) + d_Y\big(f(b),\bar{f}(d)\big) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

This verifies that $d_X(c,d) < \frac{\delta}{3}$ implies $d_Y(\bar{f}(c),\bar{f}(d)) < \epsilon$ in the case when $c,d \in \bar{A} \smallsetminus A$. Simpler arguments can be used when $c \in A$ or $d \in A$. In the case when $c \in A$ for instance, the above inequalities all hold with a taken to equal c.

5. (Lang II.5.12) Let U be an open subset of a normed vector space. Show that U is connected if and only if U is path (or arcwise) connected. (Recall that if a topological space is path connected, then it is connected. See Proposition 2.7. You do not need to prove this.) (*Hint*: define the notion of a path-component, which is analogous to the notion of connected component.)

Solution: Suppose that U is not path connected. We will show that U is not connected.

We define a relation on U. Let $p, q \in U$, and say they are *joined by a path* if there is a path $\gamma : [0,1] \to U$ with $\gamma(0) = p$ and $\gamma(1) = q$. This is an equivalence relation: It is reflexive because the constant function $\gamma(t) = p$ is a path. It is symmetric because if $\gamma(t)$ is a path, then so is $\gamma(1-t)$. It is transitive because if γ joins p to q and η joins q to r, then the path

$$t \mapsto \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ \eta(2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

joins p to r.

Because this is an equivalence relation, it partitions U into equivalence classes. (The equivalence class of $p \in U$ is called the *path-component of* p.) For $p \in P$, let [p] denote the path-component of p. There are at least two equivalence classes because U is not path connected. Endow the collection $\{[p] : p \in U\}$ with the discrete topology. We claim that the map $p \mapsto [p]$ is continuous. This implies that U is disconnected, since the image contains at least two distinct points and the continuous image of a connected set in a discrete space can only consist of one point. See Proposition 2.2.

To see that $p \mapsto [p]$ is continuous, take an arbitrary point $q \in U$ and consider its pathcomponent [q]. We claim that [q] it contains an open neighborhood about q. This is equivalent to saying that $p \mapsto [p]$ is continuous at q, and because we took q to be arbitrary this implies that $p \mapsto [p]$ is open. Since $q \in U, U$ is open, and open balls form a basis for the topology, there is an $\epsilon > 0$ so that the open ball centered at q, $B_{\epsilon}(q)$, is a subset of U. We claim that the whole ball $B_{\epsilon}(q)$ is in the same path component as q. Choose $r \in B_{\epsilon}(q)$ distinct from q. Then we can define

$$\gamma(t) = (1-t)q + tr.$$

Clearly γ joins q to r and $\gamma(0,1) \subset B_{\epsilon}(q) \subset U$. It follows that [r] = [q]. Because $r \in B_{\epsilon}(q)$ was arbitrary, we conclude that [r] = [q] for each $r \in B_{\epsilon}(q)$. This verifies that the preimage of [q] contains $B_{\epsilon}(q)$ as required to verify the continuity of $p \mapsto [p]$ at q.

Remark: To be pedantic, we should have shown that $\gamma(t)$ is continuous. Choose $t_0 \in [0, 1]$ and $\epsilon > 0$. Observe that

$$\gamma(t) - \gamma(t_0) = (t - t_0)(r - q).$$

So, setting $\delta = \frac{\epsilon}{|r-q|}$, when $|t - t_0| < \delta$, we have

$$|\gamma(t) - \gamma(t_0)| = |(t - t_0)(r - q)| = |t - t_0| \cdot |r - q| < \delta \cdot |r - q| = \epsilon$$

This verifies the metric definition of continuity.

6. The closed topologist's sine curve is

$$T = \{ (x, \sin\frac{\pi}{x}) : 0 < x \le 1 \} \cup \{ (0, y) : y \in [-1, 1] \}.$$

Page 4

Show that T is connected but not path connected.

Solution: We begin by showing T is connected. If T were not connected, then it could be split (non-trivially) into connected components. Observe that the subsets

$$A = \{(0, y) : y \in [-1, 1]\} \text{ and } B = \{(x, \sin \frac{\pi}{x}) : 0 < x \le 1\}.$$

are both connected since they are continuous images of intervals. It follows that the only possible connected components of T which are proper subsets of T are A and B. So, if T were disconnected, it would have to be that A and B are disjoint open subsets. We will show that A is not in fact open in T. Recall that in the subspace topology on T that open sets are intersections of open sets in \mathbb{R}^2 with T. Therefore, to prove that A is not open in T, it suffices to show that there is no open set $U \subset \mathbb{R}^2$ so that $U \cap T = A$. Let $U \subset \mathbb{R}^2$ be any open set containing A. Then in particular, U contains the point (0,0). Then because U is open, there is an $\epsilon > 0$ so that $(x,0) \in U$ whenever $x < \epsilon$. Then we can choose a integer $n \ge 1$ so that $\frac{1}{n} < \epsilon$. Then

$$(\frac{1}{n}, \sin\frac{\pi}{1/n}) = (\frac{1}{n}, \sin n\pi) = (\frac{1}{n}, 0) \in U \cap B.$$

We conclude that any open set containing A also contains points in B, so A is not open. We conclude that T is connected, because there is no way to non-trivially split T into connected components.

Now we will show T is not path connected. If it was path connected, then there would be a continuous $\gamma : [0,1] \to T$ with $\gamma(0) = (1,0)$ and $\gamma(1) = (0,1)$. We now suppose such a γ exists, and we will draw a contradiction. Consider the continuous projection $\pi_x : (x,y) \mapsto x$. Since γ is continuous, the composition $\pi_x \circ \gamma$ is continuous. We conclude that $J = (\pi_x \circ \gamma)^{-1}(\{0\})$ is closed. Note also that it contains 1, since $\gamma(1) = (0,1)$. Set $t_0 = \inf J$. Since J is closed and non-empty, t_0 is well defined and lies in J.

Observe that for $0 \le t < t_0$, $\pi_x \circ \gamma(t) > 0$ while $\pi_x \circ \gamma(t_0) = 0$. Since $\pi_x \circ \gamma$ is continuous and $[0, t_0]$ is connected with $\pi_x \circ \gamma(0) = 1$ and $\pi_x \circ \gamma(t_0) = 0$, it must be that $\pi_x \circ \gamma([0, t_0]) = [0, 1]$. So in particular, there is a sequence $\{s_n \in [0, t_0]\}$ with $\pi_x \circ \gamma(s_n) = \frac{1}{n}$. Observe that by definition of T, we have $\gamma(s_n) = (\frac{1}{n}, 0)$. Then by (sequential) compactness of $\gamma([0, t_0])$, there is an $s \in [0, t_0]$ so that

$$\gamma(s) = \lim_{n \to \infty} \gamma(s_n) = \lim_{n \to \infty} \left(\frac{1}{n}, 0\right) = (0, 0).$$

Recall in the first sentence of the paragraph we stated that t_0 was the only point in $[0, t_0]$ where $\pi_x \circ \gamma(t) = 0$. We conclude that $s = t_0$ and $\gamma(t_0) = (0, 0)$. We now make a similar argument for a different sequence. Observe that there is a sequence $\{r_n \in [0, t_0]\}$ with $\pi_x \circ \gamma(s_n) = \frac{2}{4n+1}$. Again by compactness, there is an $r \in [0, t_0]$ so that

$$\gamma(r) = \lim_{n \to \infty} \gamma(r_n) = \lim_{n \to \infty} \left(\frac{2}{4n+1}, \sin\frac{(4n+1)\pi}{2}\right) = \lim_{n \to \infty} \left(\frac{2}{4n+1}, 1\right) = (0,1).$$

Because $\pi_x \circ \gamma(r) = 0$, we again conclude that $r = t_0$ and therefore $\gamma(t_0) = (0, 1)$. We have shown $\gamma(t_0) = (0, 0)$ and $\gamma(t_0) = (0, 1)$, which is a contradiction.