Math 70100: Functions of a Real Variable |
Homework 2, due Wednesday, September 17th.

1. (Modified from Folland 4.].1?’) Suppose X is a topological space and A C X is dense. Prove
that if U C X is open, then U = U N A, where - denotes closure.

Solution: Let B C X. Recall B =X \ (Int(X \ B)). By definition of the interior, then
x & B if and only if there is an open set V C X with x € V and V N B = (). Thus, to see
that U = U N A, it suffices to check that for any open set V' C X, we have VNU = 0 if and
only if VNUNA = (. One way is clear: if VN U = (), then clearly VNU N A = (). Now
suppose that V NU # (). Then V N U is open and non-empty, so by density of A, there is
ana € VNUNA. In particular, V N U N A is non-empty as required.

2. (From Zakeri’'s Homework 2) Give a direct proof that the interval [0, 1] is compact.
(Hint: Let U be an open cover. Define

S ={xel0,1] : [0,z] is covered by finitely many U € U}.)

Prove that S = [0, 1].)

Solution: Let ¢ = sup S. We claim that ¢t € S. Since ¢t € [0, 1], there is an open set U, € U
so that t € U,. Because U, is open and contains ¢, there is an € > 0 so that s € U, whenever
t —e < s <t. Then because t = sup S, there is an s € S with ¢t —e < s < t. Then [0, s] has
a finite covering by some Uy, ..., U, € U. Now observe that {U,} U{U; : 1 <i<n}isa
finite covering of [0,t], so t € S as claimed.

Again let t = sup S. Now we claim that t = 1. Suppose to the contrary that ¢ < 1. Then,
[0,¢] has a finite covering by some Vi,...,V,, € U with [0,¢] C ", V;. But then all of
(U™, Vi is covered by this finite collection, and [J;", V; contains ¢ and since it is open also
contains real numbers bigger than ¢. But this contradicts the definition of ¢ as sup S. We
conclude that t = 1. From the prior paragraph, we know that 1 € S, so by definition of .S,
the interval [0, 1] is covered by finitely many elements of U.

3. (Modified from Lang II.5.1a) Let X and Y be compact Hausdorff topological spaces. Prove
that f: X — Y is continuous if and only if its graph is closed in X x Y. (The graph of f is the
set

F={(z,y) e X xY : y=f(x)})

(Remark: More generally the result is true if X is just a topological space and Y is a compact
Hausdorff space. This is the closed graph theorem.)


http://www.math.qc.edu/~zakeri/mat701/h2.pdf

Solution: Remark 1: In solving the problem, it may be useful to note that the statement
fails in the absence of compactness. For example, consider the function f : R — R given
by f(x) =1/xzif v <0 and f(z) =0 if x > 0. This function has a closed graph but is not
continuous.

Let X and Y be compact Hausdorff spaces. Let f : X — Y be a function and let I" be its
graph.

First suppose that f is continuous. We will show its graph I' is closed by showing its
compliment is open. To show (X x Y) \ T is open, it is sufficient to show that for any
point (z,y) € (X x Y) \ T, there is an open set U C X x Y so that (z,y) € U and
UNT = (. Choose (z,y) € (X xY)~T. Then y # f(x). Then since Y is Hausdorff,
there are disjoint open sets Vi and V5 so that f(x) € V; and y € V5. Continuity of f implies
that f~'(V;) C X is an open neighborhood of z. Then for any point 2/ € f~'(V}), we
have f(x) € Vi. In particular the no point in f~!(V}) has an image in V,. Tt follows that
F7Y(V1) x Vs is disjoint from the graph I'. Further, the product of open sets is open. This
verifies that the compliment of I' is open and therefore that I' is closed.

Now suppose that the graph T is closed. Take V' C Y open. We will show that f~1(V) is
open. Fix some z € f~1(V) so that f(x) € V. It is sufficient to find a neighborhood A of x
so that f(a) C V for a € A. Since I' is closed, for each point (p,q) € (X xY) \ T, there are
open sets A,, C X and B,, CY with p € A,,, ¢ € By, and (4,, x B,,) NT = 0. (This
uses the fact that sets of this type form a basis for the product topology.) In particular,
make a choice of such sets A,, and B, , for each pair of points (z,y) where z € f~1(V) is
fixed as above and y € V. Observe that Y \ V is a closed subset of a compact space and
therefore compact. The sets {B,, : y ¢ V} form an open cover of Y \ V, so there is a
finite subcover of the form

{Boyss-- - Boga}

where y1,...,y, is a list of elements of Y ~\ V. Now set
A=A, N N ALy,

Observe that + € A because x € A,, for all y ¢ V. We claim that if a € A then
f(a) € V, which verifies the continuity of f because A is open and contains x. Suppose to
the contrary that f(a) € V. Then because we have a finite cover of Y \V, f(a) € B,,, for
some ¢ € {1,...,n}. Then a € A,,, and f(a) € B,,,, but A,,, x B,,, was defined to be
disjoint from I'. This contradicts the observation that (a, f (a)) lies in the graph.

4. (Modified from Lang I1.5.1b) A function f : X — Y between metric spaces is uniformly contin-
uous if for all € > 0, there is a § > 0 so that dx(z1,x2) < ¢ implies dy (f(:z:l), f(:zrg)) < ¢ for all
1,22 € X.

Let Y be a complete metric space and X be a metric space. Let A C X. Let f: A — Y be
uniformly continuous, and let A C X denote the closure of A. Show that there exists a unique
extension of f to a continuous map f : A — Y, and show that f is uniformly continuous. (You
may assume that X and Y are subsets of Banach spaces if you wish, in order to write the

distance function in terms of the absolute value sign.)
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Solution: Remark: The main idea here is that uniformly continuous functions send
Cauchy sequences to Cauchy sequences. Also note that all convergent sequences are Cauchy.

Suppose as above that X and Y are metric spaces with Y complete. Let A C X and let
f A=Y be uniformly continuous.

We first need to define our extension f at each point a € A~ A. For each such a, we choose
an a sequence of points {z,, € A} which converge to a. If we want f to be continuous at a,
then the sequence {f(z,)} must converge and f(a) must be the limit. (Otherwise we get a
contradiction to the definition of continuity of f at a.) This verifies uniqueness of f, since
the values of f at each point in A\ A are uniquely determined. Now we will check that the
sequence { f(r,)} converges. Because Y is complete, it is sufficient to check that {f(z,)} is
Cauchy. Observe that because {z,} converges to a, this sequence is Cauchy. Now we will
verify that {f(z,)} is Cauchy. Choose € > 0. Then, because f is uniformly continuous,
there is a § > 0 so that dy(z,2’) < § implies dy (f(z), f(2)) < e. Then because {z,} is
Cauchy, there is an N so that m,n > N implies dx(z,,x,) < . Taken together we see
that m,n > N implies dy (f(xm), f(xn)) < €, as required.

It remains to check that f is uniformly continuous. Choose € > 0. Then because f is
uniformly continuous, there is a § > 0 so that for each a,b € A with dx(a,b) < §, we have
dy(f(a),f(b)) < 5. Now let ¢,d € A with dx (e, d) < %. We claim that dy(f(c),f(d)) < €,
which will verify the definition of uniform continuity. Suppose ¢ € A~ A. Above we chose
a sequence {r, € A} converging to ¢, and we know {f(x,)} converges to f(c). So, there is
an N so that n > N implies dx(c,z,) < 2 and dy (f(c), f(zn)) < £. Set a = x,, € A for
some n > N. Then

dx(c,a) <g and dy (f(c), f(a)) < §

Also suppose that d € A~ A. In a similar manner, we find b € A with

dX(d,b)<g and dy (F(d), (b)) <

Wl ™

Now observe that by the triangle inequality,

(=%

4] )
dx(a,b) <dx(a,c) +dx(c,d)+dx(d,b) = stgtz= 5

w

So, by our use of uniform continuity of f, we see that dy (f(a), f(b)) < 5. Then,

_ _ _ - € € €
dy (F(0), Fd) < dy (F(0), f(@)) + dv (F(@), J0)) +dy (F0), (@) < 5+ 5+ =¢
This verifies that dx(c,d) < g implies dy (f(c), f(d)) < € in the case when ¢, d € A~ A.
Simpler arguments can be used when ¢ € A or d € A. In the case when ¢ € A for instance,

the above inequalities all hold with a taken to equal c.

5. (Lang 11.5.12) Let U be an open subset of a normed vector space. Show that U is connected
if and only if U is path (or arcwise) connected. (Recall that if a topological space is path con-

nected, then it is connected. See Proposition 2.7. You do not need to prove this.) (Hint: define
Page 3



the notion of a path-component, which is analogous to the notion of connected component.)

Solution: Suppose that U is not path connected. We will show that U is not connected.

We define a relation on U. Let p,q € U, and say they are joined by a path if there is a path
v : [0,1] = U with (0) = p and y(1) = ¢. This is an equivalence relation: It is reflexive
because the constant function ~y(t) = p is a path. It is symmetric because if (¢) is a path,
then so is y(1 —t). It is transitive because if y joins p to ¢ and 7 joins ¢ to r, then the path

‘s {7(275)

1
2
n(2t — 1) 1

o= O
IA A

<t
<t
joins p to r.

Because this is an equivalence relation, it partitions U into equivalence classes. (The equiv-
alence class of p € U is called the path-component of p.) For p € P, let [p| denote the
path-component of p. There are at least two equivalence classes because U is not path con-
nected. Endow the collection {[p] : p € U} with the discrete topology. We claim that the
map p +— [p] is continuous. This implies that U is disconnected, since the image contains
at least two distinct points and the continuous image of a connected set in a discrete space
can only consist of one point. See Proposition 2.2.

To see that p — [p] is continuous, take an arbitrary point ¢ € U and consider its path-
component [g]. We claim that [¢] it contains an open neighborhood about ¢. This is
equivalent to saying that p — [p] is continuous at ¢, and because we took ¢ to be arbitrary
this implies that p — [p] is open. Since ¢ € U, U is open, and open balls form a basis for
the topology, there is an € > 0 so that the open ball centered at g, B(q), is a subset of U.
We claim that the whole ball B.(g) is in the same path component as q. Choose r € B.(q)
distinct from ¢. Then we can define

v(t) = (1 —t)qg + tr.

Clearly v joins ¢ to r and v(0,1) C Bc(q) C U. It follows that [r] = [¢]. Because r € B.(q)
was arbitrary, we conclude that [r] = [g] for each r € B.(q). This verifies that the preimage
of [g] contains B.(q) as required to verify the continuity of p — [p] at g.

Remark: To be pedantic, we should have shown that () is continuous. Choose ¢, € [0, 1]
and € > 0. Observe that

Y(t) = (o) = (t —to)(r — q).

So, setting § = when |t — t| < d, we have

_e
[r—ql|’

V() = v (to)l = [(t = to)(r — )| = [t —to| - [r =gl <0 -[r —gq| =€

This verifies the metric definition of continuity.

6. The closed topologist’s sine curve is

T:{(x,sing) L 0<z<1}U{(0,y) : ye[-1,1]}
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Show that T' is connected but not path connected.

Solution: We begin by showing 7' is connected. If 7" were not connected, then it could be
split (non-trivially) into connected components. Observe that the subsets

A={0,y) : ye[-1,1]} and B:{(x,sing) L 0<z <1},

are both connected since they are continuous images of intervals. It follows that the only
possible connected components of T' which are proper subsets of T are A and B. So, if T" were
disconnected, it would have to be that A and B are disjoint open subsets. We will show that A is
not in fact open in 7. Recall that in the subspace topology on T" that open sets are intersections
of open sets in R? with T. Therefore, to prove that A is not open in T, it suffices to show that
there is no open set U C R? so that U NT = A. Let U C R? be any open set containing A.
Then in particular, U contains the point (0,0). Then because U is open, there is an € > 0 so
that (z,0) € U whenever x < e. Then we can choose a integer n > 1 so that % < €. Then

1 T 1 1

—,8in —) = (—,sinnw) = (—,0) e UN B.

We conclude that any open set containing A also contains points in B, so A is not open. We
conclude that T is connected, because there is no way to non-trivially split 7" into connected
components.

Now we will show T is not path connected. If it was path connected, then there would be a
continuous 7 : [0, 1] — T with v(0) = (1,0) and (1) = (0,1). We now suppose such a v exists,
and we will draw a contradiction. Consider the continuous projection 7, : (x,y) — x. Since 7y
is continuous, the composition , o 7 is continuous. We conclude that J = (m, o v)~1({0}) is
closed. Note also that it contains 1, since (1) = (0,1). Set t, = inf J. Since J is closed and
non-empty, tg is well defined and lies in J.

Observe that for 0 <t < tg, m, 0y(t) > 0 while 7, 0oy(ty) = 0. Since 7, o~ is continuous and
0, to] is connected with 7w, 0v(0) = 1 and 7, 0y(ty) = 0, it must be that 7, 0([0,?0]) = [0, 1]. So
in particular, there is a sequence {s, € [0, o]} with m, oy(s,) = +. Observe that by definition of
T, we have 7(s,) = (£,0). Then by (sequential) compactness of v([0,]), there is an s € [0, t]
so that

2(s) = lim A(s,) = lim (=, 0) = (0,0).

n—00 n—oo N

Recall in the first sentence of the paragraph we stated that to was the only point in [0, o] where
7z 0 Y(t) = 0. We conclude that s = ¢y and v(¢y) = (0,0). We now make a similar argument
for a different sequence. Observe that there is a sequence {r, € [0, %]} with m, oy(sn) = 727
Again by compactness, there is an r € [0, ¢y] so that

2 (4n+ 1)1 2
i = li 1) =(0,1).

o o
y(r) = lim y(ra) = lim (=

Because 7, o y(r) = 0, we again conclude that r = t; and therefore v(¢y) = (0,1). We have
shown 7(to) = (0,0) and ~(to) = (0, 1), which is a contradiction.
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