Math 70100: Functions of a Real Variable |
Homework 1, due Wednesday, September 10th.

1. (Based on Pugh 2.92) Let X be a topological space. Recall that a neighborhood N of x € X is a subset
N C X so that there is an open set U C X with x € U and U C N. A boundary point of a set A C X
is a point x € X so that every neighborhood of x intersects both A and X ~ A. The boundary of A,

0A, is the set of all boundary points of A.
(a) Show that 94 = X \ (Int(A) U Int(X \ A)).

Solution: Recall that Int(A) is the union of all open sets contained in A. Suppose that
x ¢ Int(A) UInt(X ~ A). This is equivalent to saying that no open set containing z is entirely
contained in A or X ~ A. In other words that z is a boundary point of A. This shows

X\ (Int(A) UInt(X \ A)) = 9A.

(b) Explain why 0A is closed.

Solution: Interiors of sets are always open, so Int(A)UInt(X \ A) is open and its compliment,
0A, is closed.

(¢) Show that 0A C JA.

Solution: It is more generally true that if B C X is a closed set, then 0B C B. Because B
is closed, its compliment is open. So, B = B \ Int(B), which is clearly inside of B.

(d) Show that 999A = JOA.

Solution: Again, it is more generally true that if B C X is a closed set, then d0B = 0B.
Because B is closed, 0B = B ~\ Int(B). Since 0B is closed, we can apply this trick again:

90B = 9(B \ Int(B)) = (B ~ Int(B)) \ Int(B \ Int(B)).
But, the interior of B \ Int(B) is contained in the interior of B. So,
90B > (B~ Int(B)) \ Int(B) = B \ Int(B) = 0B.

Using part (c), we have 00B C 0B, so together we see 0B = 0B.

Given an example which illustrates that 00A may not equal 0A.

Solution: Let X =R and A =Qn|0,1]. Then 0A = [0, 1] and 00A = {0, 1}.

2. (Pugh 2.37) Let C' denote the vector space of continuous functions from [0, 1] to R. This space can be
endowed with the sup (or L) norm,

|[f] = sup {[f(x)] = 2 <0,1]}

or the L! norm,

Hf||—/ ()] d.

Consider the identity map between id from (C,|- ) to (C,] - [|)-



(a) Show that id is a continuous. (Thus it is a continuous linear bijection.)

Solution: Solution 1: (Based on the metric definition of continuity.) We will show that id
is continuous at each point of C'. Let f € C'. We will show that for each ¢ > 0, there is a
d > 0 so that |f — g| < ¢ implies ||f — g|| < €. Choosing ¢§ = € suffices. Suppose |f — g] < e.
Let c=|f —g| > 0. Then, |f(x) — g(x)] < ¢ < € for each x € [0,1]. So,

1 1
||f—g||=/O |f(x)—g(m)|dx§/0 cdr=c<e.

Solution 2: (Bounded operator argument.) Because we are working with normed vector
spaces, it is sufficient to prove that id is a bounded linear operator. So, we will show that
there is an M > 0 so that for all f € C, we have || f|| < M|f|. Observe that by definition,
|f(z)| < |f| for all x € X. Therefore,

1 1
an:/o |f(fv)|dx§/0 ] de=|f].

Thus, id is a bounded linear operator (with M > 1) and therefore id is continuous.

(b) Show that the inverse id ™' is not continuous.

Solution: Recall that for a metric space the sequence definition for continuity is equivalent
to the topological definition. We will use the sequence definition here. We will find a sequence
of functions { f,,} so that || f,|| tends to zero (and thus f, tends to the zero function), but |f,|
does not tend to zero.

Define f,(x) = ﬁ for integers n > 1. Note that f, is positive and decreasing on [0, 1], so
|ful = fn(0) =1 for all n. On the other hand,

1

R e

nr+ 1 0 n

One can use L’Hopital’s rule to show that ||f,| — 0 as n — oco.

3. (Modified from Lang I1.5.3a) Let €' be the set of all sequences a = {a,, }nen of real numbers such that
Y nen |@n| converges. Define
la] = E |-

neN

(a) Prove that |- | is a norm on (.

Solution: We will verify that |- | satisfies the definition of a normed vector space. Recall that

N

ol = 3 laal = Jim > Jal.

neN n=1

First we claim that |a| > 0, with equality only if a, = 0 for all n € N. Observe that the
sequence of partial sums 27]1\;1 la,| are all non-negative since they are sums of non-negative
numbers. Any limit of non-negative numbers is non-negative, so |a| is non-negative. Now
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suppose that for some m € N, we have a,, # 0. In this case the partial sum > " |a,,| is
positive. Furthermore,

m )
ol =) laml + > laal,
n=1 n=m-+1

and the later infinite sum is non-negative by the above remarks. So we conclude that

m
o > Jam| > 0.
n=1

Second, we will show that for ¢ € R we have |ca| = |c||ar|. This is a basic observation about
pulling constants out of sums and limits:

lcal = limy,e ZnNle‘CGn‘ = limy 00 Zi\f:l ‘?VHan|
= limyoeo || Doy lan| = le[limy oo Y2 lan] = [c][al.

Third, we need to show that if @ = {a, }nen and 8 = {b, }nen then |a+ 8] < |a| + |5]. This
follows from from properties of sums and limits, and the triangle inequality:

o+ B8] = lmy_e 25:1 lan 4 by| < limpy_e0 mev:l || + [bn|

= limy,eo Zgzl |an| + 27]1\/:1 |bn| N
= limy_oo anl |Cln| + limpy oo anl |bn| = |Oé| + ’6|

(b) Recall that a sequence {a,} in a normed vector space is Cauchy if given any € > 0, there is an
N € N so that |a,, — a,| < € for m,n > N. A normed vector space is complete if all Cauchy
sequences converge. Show that ¢! is complete with the norm | - |.

Solution: Let {a,}nen be a sequence in ¢, Each a,, is a sequence of real numbers which
we denote by {an x }ren-

Now suppose {ay, }nen is Cauchy. We first claim that for any k& € N, the sequence {ay k fnen is
a Cauchy sequence (in R). To verify this, fix £ and let € > 0. Then since {a, }ren is Cauchy,
there is an N so that n,m > N implies |a,, — a,,| < €. Finally observe that for each n,m > N,

|an,k - am,k’ < Z ‘an,j - am,j| - ‘an - am| < €.
jEN

In particular, |a, g — ami| < € for m,n > N as needed to show that {a,t}nen is Cauchy.

The previous paragraph showed that for each k& € N, {ay}nen is Cauchy. Since the real
numbers are complete, this sequence has a limit, call it b;. So we have a sequence = {by }ren
with the property that lim,_,o a, = by for all k.

It remains to show that § € ¢! and that «,, — 3 as n — oo in the ¢!-norm topology.

We make the following:
Claim 1. If ¢ > 0 and N is such that for n,m > N we have |a, — a,,| < €, then for
n > N, |a, — B] < 3e. (Note that the infinite sums of a non-negative sequence such as
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|, — Bl = D ke lank — bi| always exists in the sense that it must converge to either a real
number or +00.)

Suppose that Claim 1 is false. Then we can choose € > 0 and NN so that for n,m > N we have
|, — aum| < €, but there is an ny > N so that |a,, — 8] > 3e. Then since

K

|an, — B = Z |Gng k. — bk| = [}l_rflooz | Qg ke — br| > 3e,

keN k=1

there is a K so that .
Z |an0,k — bkl > 2e.
k=1

Now observe that for any £ € N with 1 < k£ < K, we have that a,, , — by as m — oo. Because
this is only a finite list of values of k, we can find an M so that |a,; — bk < 5 for m > M
and each k with 1 < k < K. By the triangle inequality, for any m > M,

Zszl |ano,k - bk:| Zgzl (|ano,k - CLm,kl + |am,k - bk|)
Zk:l (|ano7k - am,kl + %)

€+ Zszl |Gng ke — Qi < €+ |, — Q| < €+ €= 2e.

I IAIA

But this contradicts the earlier statement that S 0 | |anx — bx| > 2e.

We will now show that § € ¢'. We need to show that >,  |bx] < co. Since {a,} is Cauchy,
there is an N so that n,m > N implies |a;,, — | < 1. Then by Claim 1, we know that for
n > N, we have |a,, — | < 3. Fix such an n. Then by the triangle inequality,

D bl < (br = @] + lang]) <3+ Jou| < o

keN keN

Finally, we need to show that a,, — . Choose ¢ > 0. We will find an N so that n > N implies
|, — B] < €. Since {a, } is Cauchy, we can find an N so that n,m > N implies |a, —a,| < 5.
By Claim 1, for this NV, we have n > N implies that |a,, — f| < € as desired.

4. (Lang 11.18) The diagonal A is the set of all points (z, ).
(a) Show that a space X is Hausdorff if and only if the diagonal is closed in X x X.

Solution: Because this is a finite product, we recall that a basis for the product topology is
given by sets of the form U x V where U and V are both open in X.

Suppose X is Hausdorff. We will show that the diagonal A is closed by showing that (X x
X) N A is open. To see this, it suffices to show that for any (z,y) with = # y, there is an
open subset in X x X containing (x,y) which does not intersect A. (The compliment of A is
then the union of such open sets, which must therefore be open.) Fix a pair (z,y) with = # y.
Since X is Hausdorff, there are disjoint open sets U and V' so that z € U and y € V. Observe
that disjointness implies that U x V' does not intersect A. In summary, we have shown that
(x,y) lies in the open set U x V which is contained in X ~ A.

Page 4



Conversely, suppose that (X x X) ~ A is open. Let (z,y) € (X x X)~ A. Then since the
sets of the form U x V with U,V C X open form a basis for the topology, we know that
(X x X)~\ A is a union of such sets. It follows that there is a pair of open sets U x V' so that
(x,y) eUxVand U xV C (X x X)~ A is open. We conclude that U x V is disjoint from
the diagonal, which is the same as saying that UNV = (). Also (z,y) € U x V is the same as
x € U and y € V. This verifies that X is Hausdorff.

(b) Show that a product of Hausdorff spaces is Hausdorff.

Solution: Suppose {X; : i € A} is a collection of Hausdorff topological spaces, and endow
X = [],ep Xi with the product topology. Let  +— x; denote the projection X — X, which is
continuous. (Continuity of these maps defines the topology.) Let z,y € X be distinct. Then,
there is some j € A so that x; # y;. Then because the space X; is Hausdorff, there are disjoint
open sets U,V C X so that z; € U and y; € V. By continuity of the map 7;, the sets 7Tj_1(U)
and 7rj_1(V) are open. They are also disjoint sets since their images under the map =; are
disjoint. Further, z € w;'(U) and y € w; '(V), which verifies that X is Hausdorff.

5. (Lang I1.5.5¢) Let X be a metric space. For each x € X, define the function f, on X by f,(y) = d(z,y).
Let || - || be the sup norm.

(a) Show that d(z,y) = |[fo = fyll-

Solution: By definition,
1fe = fyll = sup {ld(z,2) —d(y,2)| : =€ X}
By taking z = y, we observe that
1fe = full = ld(2,y) = d(y,y)| = d(z, y).

Now let z € X be arbitrary. We will show that |d(x, z) — d(y, )| < d(x,y) for every z. From
this it follows that ||f, — f,|| < d(z,y) as required. Fix z € X. Observe that we have the
triangle inequality, d(z,y) + d(y, z) > d(z, z). It follows that

d(‘T? Z) - d(y7 Z) < d(.ﬁlﬁ',y)
We also have the triangle inequality, d(y, x) + d(x, z) > d(y, z). From this it follows that
d(.ﬁl?, Z) o d<y7 Z) > —d($, y)

Taken together, we see that |d(z, z) — d(y, z)| < d(x,y) as needed to show that || f, — f,|| <
d(z,y).

(b) Let a be a fixed element of X, and let g, = f, — f,. Show that the map x — g, is a distance-
preserving embedding of X into the normed space of bounded functions on X. (Remark: This
shows that every metric space is isometric to a subset of a normed vector space.)

Solution: First we observe that g, is a bounded function by the prior part. Indeed, for each
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r e X,
sup{g:(y) : y € X} =gl = |z — ful = d(x,a),

with the last equality from the prior part. Furthermore, it is distance preserving:

g2 = gyl = (o = fa) = (fy = Ja) | = [lfa = fyll = d(,9).

(It is clearly an embedding (i.e., it is injective), since if x # y, d(x,y) > 0 and therefore
192 — g4Il > 0.)

6. (Lang I11.5.8ab) Let X be a topological space and E a vector space with norm |-|. Let M (X, E) denote
the set of all maps from X to E. Let B(X, E) denote the set of bounded maps from X to E endowed
with the sup norm defined by || f|| = sup{|f(z)| : = € X}. Let BC(X,E) C B(X, E) be the set of

bounded continuous maps.

(a) Show that BC(X, E) is closed in B(X, E).

Solution: Observe that B(X, E) is a normed vector space. So, to show BC(X, F) is closed
it suffices to prove that given any sequence f, € BC(X, E) converging to f € B(X, E), then
f is actually continuous.

(Remark: A sequence of functions {f,} converges to f uniformly if it converges to f in the
sup norm || - || as in the statement of the problem. Thus, we are proving a general form of the
theorem “a uniform limit of continuous functions is continuous.”)

Suppose that {f, € BC(X, E)} converges to f € B(X, E). To show f is continuous, it suffices
to prove it is continuous at all points of X. So we will show that for all x € X and all ¢ > 0
there is a neighborhood U of x so that |f(z) — f(u)| < e for all w € U. Pick z € X and € > 0.
Then since f, — f, there is an N so that |fy — f| < 5. In other words,

€
sup {|fn(x) — f(z)| : x € X} < 3
Also by continuity of fy, there is a neighborhood U of = so that v € U implies | fx(u)— fy(z)] <
. Then for u € U, we have:

€

|fn(u) — fn(z)] < 3

€ €
n(e) = @) < 5 ) = )] < &
By use of the triangle inequality, we see that for u € U,

1) = F(w)] < |f(@) = (@) + @) = Fx()] + @) — f@] < 5+ 5 +5=¢

Thus, f is continuous at x. Since z was arbitrary, f is continuous.

(b) A Banach space is a complete normed vector space. Show that if E is a Banach space, then
B(X, E) is complete.

Solution: Let {f,} be a Cauchy sequence in B(X, FE). We claim that it follows that for any
z € X, the sequence {f,(z)} is a Cauchy sequence in E. This uses the definition of Cauchy
sequence. Let x € X be arbitrary. To show {f,(z)} is Cauchy, we will show that for all e > 0,

Page 6



there is an N so that n,m > N implies |f,(z) — fi(2)| < €. Fix some € > 0. Since {f,} is
Cauchy, there is an N so that n,m > N implies ||f, — fm| < €. So by definition of the sup
norm, |f,(z) — fm(x)| < ||fn — fill < € as desired.

Now since F is a Banach space and for each x € X, the sequence {f,(z)} is Cauchy, there is
a limit which we define to be f(z) = lim,_,o fn(x). This defines a function f: X — E.

We claim that {f,} converges to this new function f in the sup norm (or uniform) topology.
Let € > 0. We need to show that there is an N so that n > N implies ||f, — f|| < €. Since
{fn} is Cauchy, we can define N so that n,m > N implies that ||f, — f| < 5. Fixn > N.
Then because f(x) is the limit of f,,(z) as m — oo, for any € X we have

o) = F@) = lim[fufe) ~ fun(o)]

and thus |f,(2) — f(z)| < § because n > N and by the above remarks. In particular, since
x was arbitrary (and N did not depend on x), n > N implies |f, — f| < €, which verifies the
definition of convergence.

It remains to show that f is bounded. Since f, tends to f, there is an n so that |f, — f| < 1.
Then |f,(z) — f(x)] < 1 for all x € X. Then, by the triangle inequality, for all z € X,

[f (@) < [fu@)] + [fulx) = f2)] < [fulx)] + 1 <|ful +1 < o0,

since f, € B(X, E).

7. Let X be a topological space. Then, X is called separable if it has a countable base (or basis) for its
topology. A set A C X is dense (in X ) if its closure A = X.

(a) (Lang 11.15) Show that a separable space has a countable dense subset.

Solution: Remark: Recall that X \ A = Int(X \ A). So, by definition of the interior, A
is dense if and only if A intersects every open subset of X.

Suppose X is separable. Then it has a base which can be written as B = {B; : i € N}. We
can assume without loss of generality that B; = (). The for each integer ¢ > 2, B; # ), so we
can choose a point x; € B;.

We claim that S = {z; : i > 2} is dense in X. Let U C X be non-empty and open. We must
show that there is an point from S inside of U. Since B is a basis, there is a subset A C N
so that U = (J,c, Bi- Then since U is non-empty, there must be an i € A with 4 > 2. Then
r; € B; C U. So S intersects U as claimed.

(b) (Lang II.16a) Show that if X is a metric space and has a countable dense subset, then X is
separable.

Solution: Let A be a countable dense subset of X. For x € X and r > 0, let B,.(x) denote
the open ball of radius r about x. Let Q, denote the positive rationals. Define

B={B,(a) : a€ Aand r € Q.},
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where B, (a) denotes the open ball of radius  around a € X. Then, B is countable because both
A and Q are countable. (B is canonically the image of A x Q, under the map (a,r) — B,(a).
So, it suffices to recall that Q, is countable, a product of countable sets is countable, and the
image of a countable set is countable.)

We claim that B is a basis for the metric topology. That is, we need to show that every open
set in U is a union of elements of B. Since the collection of all balls forms a basis for the
metric topology, it suffices to show that for any open ball U C X is the union of elements of
B. Let g € X and let ry > 0 be a real number, and define U to be the open ball centered
at xg of radius ro. To prove this it suffices to find for each x € U an element V, € B so that
x €V, and V, C U, because then U = |J,; Vo. Let & € U. Then d(x, o) < ro. Define

€ =

(ro —d(z, a:o)) > 0.

DO | —

Let WW be the open ball of radius € about z. Then, by density of A there is a point a € ANW.
Observe that d(a,z) < e. Since the rationals are dense in R, there is a rational r satisfying
d(a,z) < r < e. Observe that by construction, B,.(a) € B and x € B,(a). We also claim that
B.(a) C U. To see this let y € B,(a). Because of our choice of U, it suffices to prove that
d(y, o) < ro. By the triangle inequality, we have

d(y, o) < d(y,a) + d(a,x) + d(x,z0) <1 +7r+dz,x0) < 26 + d(T,20) = T90-

8. (Lang I1.5.17). An open covering of a topological space X is a collection U of open sets so that
X =Upey U. A subcover is a subset V C U which is still a cover (i.e., X = Uy, V).

(a) Show that every open covering of a separable space has a countable subcovering.

Solution: Suppose X is separable. Then it has a countable basis B = {B; : i € N}. Let U
be an open covering.

Define J C N to be the collection of all 2 € N so that there is a U € U with B; C U. Then,
for each j € J, we can choose a U; € U with B; C U;. We claim that {U; : j € J} is a
countable subcover. It is clearly countable since any subset of the naturals is countable, and
any image of a countable set is countable. It remains to prove that {U; : j € J} covers X.
Let x € X. Then since U is a covering, there is a U € U so that x € U. Then because B is
a basis, there is an I € N so that € B; and B; C U. But then by definition of J, we have
1 € J. So, in particular, x € B; C U; and ¢ € J. Since x was arbitrary X C U]EJ Uj.

(b) Show that a disjoint collection of open sets in a separable space is countable.

Solution: Suppose X is separable. Then it has a countable basis B = {B; : i € N}. Let V
be a collection of disjoint open sets.

Similar to the prior part, let J C N be the collection of all i € N so that B; # () and there is
aV €V with B; C V. Observe that J is countable. We claim that for each j € J, there is
a unique V' € V so that B; C V. To see this suppose B; C V and B; C V' with V, V' € V.
Then, B; C V NV’ and since the sets in V are disjoint V' = V', which proves uniqueness. So,
for j € J, we define V; € V so that B; C V. This defines a map ¢ : J — V via j — V. We
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claim that the image of this map contains all non-empty elements of V. From this it follows
that V is countable. (Any image of a countable set is countable, and a union of countable
sets is countable.) To see surjectivity recall that B is a basis. In particular, every non-empty
V €V is a union of elements of B. If B; is a non-empty element in this union, then V' = V.

(c) Show that a base (or basis) for the topology of a separable space contains a countable base for
the topology. (The red words were added to clarify the question.)

Solution: Suppose X is separable. Then it has a countable basis, which we may write as
C ={C; : i € N}. Now let B be another basis. We will show that there is a countable subset
S C B which is also a basis. That is, we need to choose a countable S C B and show that
every open set is a union of elements of §. Since C is also a basis, it will suffice to show that
each C; is a union of elements of S. It is sufficient therefore to show that for each ¢ € N, there
is a countable B; C B so that

c=u

venB;

Indeed, then S = | J,. Bi is a basis, and is countable because a countable union of countable
sets is countable.

Let i € N be arbitrary. It remains to show that there is a countable B; C B so that C; =
Uyep, U- Since B is a basis, we can choose a collection D C B so that C; = Jpep D. Then
because C is a basis, for each D € D, there is a subset Jp C N so that D = C;. Let
J = Upep Jo € N. Then observe that

Ua=UJ UJa=Up=c

jedJ DeD jelp DeD

Jj€JID

Now observe that for any j € J, we have j € Jp for some D € D. In particular then C; C D.
So for each j € J, we can choose some D; € D so that C; C D;. Thus, we have defined a map
J — D by j+— D;. We define B; to be the image of this map; B; = {D; : j € J}. Since J
is countable, we see that B; is countable. We need to show that the union of elements of B;

gives C;. Clearly since B; C D,

DeB; DeD

For the reverse inclusion, observe that C; C D; for j € J so
OZ:UOJCUDJZUD
jet jet DeB;

Thus, C; = Jpep, D as required.
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