1. (Based on Pugh 2.92) Let X be a topological space. Recall that a neighborhood N of $x \in X$ is a subset $N \subset X$ so that there is an open set $U \subset X$ with $x \in U$ and $U \subset N$. A boundary point of a set $A \subset X$ is a point $x \in X$ so that every neighborhood of x intersects both A and $X \backslash A$. The boundary of A, ∂A, is the set of all boundary points of A.
(a) Show that $\partial A=X \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(X \backslash A))$.

Solution: Recall that $\operatorname{Int}(A)$ is the union of all open sets contained in A. Suppose that $x \notin \operatorname{Int}(A) \cup \operatorname{Int}(X \backslash A)$. This is equivalent to saying that no open set containing x is entirely contained in A or $X \backslash A$. In other words that x is a boundary point of A. This shows $X \backslash(\operatorname{Int}(A) \cup \operatorname{Int}(X \backslash A))=\partial A$.
(b) Explain why ∂A is closed.

Solution: Interiors of sets are always open, so $\operatorname{Int}(A) \cup \operatorname{Int}(X \backslash A)$ is open and its compliment, ∂A, is closed.
(c) Show that $\partial \partial A \subset \partial A$.

Solution: It is more generally true that if $B \subset X$ is a closed set, then $\partial B \subset B$. Because B is closed, its compliment is open. So, $\partial B=B \backslash \operatorname{Int}(B)$, which is clearly inside of B.
(d) Show that $\partial \partial \partial A=\partial \partial A$.

Solution: Again, it is more generally true that if $B \subset X$ is a closed set, then $\partial \partial B=\partial B$. Because B is closed, $\partial B=B \backslash \operatorname{Int}(B)$. Since ∂B is closed, we can apply this trick again:

$$
\partial \partial B=\partial(B \backslash \operatorname{Int}(B))=(B \backslash \operatorname{Int}(B)) \backslash \operatorname{Int}(B \backslash \operatorname{Int}(B))
$$

But, the interior of $B \backslash \operatorname{Int}(B)$ is contained in the interior of B. So,

$$
\partial \partial B \supset(B \backslash \operatorname{Int}(B)) \backslash \operatorname{Int}(B)=B \backslash \operatorname{Int}(B)=\partial B
$$

Using part (c), we have $\partial \partial B \subset \partial B$, so together we see $\partial \partial B=\partial B$.
(e) Given an example which illustrates that $\partial \partial A$ may not equal ∂A.

Solution: Let $X=\mathbb{R}$ and $A=\mathbb{Q} \cap[0,1]$. Then $\partial A=[0,1]$ and $\partial \partial A=\{0,1\}$.
2. (Pugh 2.37) Let C denote the vector space of continuous functions from $[0,1]$ to \mathbb{R}. This space can be endowed with the $\sup \left(\right.$ or $\left.L^{\infty}\right)$ norm,

$$
|f|=\sup \{|f(x)|: x \in[0,1]\}
$$

or the L^{1} norm,

$$
\|f\|=\int_{0}^{1}|f(x)| d x
$$

Consider the identity map between $i d$ from $(C,|\cdot|)$ to $(C,\|\cdot\|)$.
(a) Show that $i d$ is a continuous. (Thus it is a continuous linear bijection.)

Solution: Solution 1: (Based on the metric definition of continuity.) We will show that $i d$ is continuous at each point of C. Let $f \in C$. We will show that for each $\epsilon>0$, there is a $\delta>0$ so that $|f-g|<\delta$ implies $\|f-g\|<\epsilon$. Choosing $\delta=\epsilon$ suffices. Suppose $|f-g|<\epsilon$. Let $c=|f-g| \geq 0$. Then, $|f(x)-g(x)| \leq c<\epsilon$ for each $x \in[0,1]$. So,

$$
\|f-g\|=\int_{0}^{1}|f(x)-g(x)| d x \leq \int_{0}^{1} c d x=c<\epsilon
$$

Solution 2: (Bounded operator argument.) Because we are working with normed vector spaces, it is sufficient to prove that $i d$ is a bounded linear operator. So, we will show that there is an $M>0$ so that for all $f \in C$, we have $\|f\|<M|f|$. Observe that by definition, $|f(x)| \leq|f|$ for all $x \in X$. Therefore,

$$
\|f\|=\int_{0}^{1}|f(x)| d x \leq \int_{0}^{1}|f| d x=|f| .
$$

Thus, $i d$ is a bounded linear operator (with $M>1$) and therefore $i d$ is continuous.
(b) Show that the inverse $i d^{-1}$ is not continuous.

Solution: Recall that for a metric space the sequence definition for continuity is equivalent to the topological definition. We will use the sequence definition here. We will find a sequence of functions $\left\{f_{n}\right\}$ so that $\left\|f_{n}\right\|$ tends to zero (and thus f_{n} tends to the zero function), but $\left|f_{n}\right|$ does not tend to zero.
Define $f_{n}(x)=\frac{1}{n x+1}$ for integers $n \geq 1$. Note that f_{n} is positive and decreasing on $[0,1]$, so $\left|f_{n}\right|=f_{n}(0)=1$ for all n. On the other hand,

$$
\left\|f_{n}\right\|=\int_{0}^{1} \frac{1}{n x+1} d x=\left[\frac{1}{n} \ln (n x+1)\right]_{0}^{1}=\frac{\ln (n+1)}{n}
$$

One can use L'Hôpital's rule to show that $\left\|f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
3. (Modified from Lang II.5.3a) Let ℓ^{1} be the set of all sequences $\alpha=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n \in \mathbb{N}}\left|a_{n}\right|$ converges. Define

$$
|\alpha|=\sum_{n \in \mathbb{N}}\left|a_{n}\right| .
$$

(a) Prove that $|\cdot|$ is a norm on ℓ^{1}.

Solution: We will verify that $|\cdot|$ satisfies the definition of a normed vector space. Recall that

$$
|\alpha|=\sum_{n \in \mathbb{N}}\left|a_{n}\right|=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}\right|
$$

First we claim that $|\alpha| \geq 0$, with equality only if $a_{n}=0$ for all $n \in \mathbb{N}$. Observe that the sequence of partial sums $\sum_{n=1}^{N}\left|a_{n}\right|$ are all non-negative since they are sums of non-negative numbers. Any limit of non-negative numbers is non-negative, so $|\alpha|$ is non-negative. Now
suppose that for some $m \in \mathbb{N}$, we have $a_{m} \neq 0$. In this case the partial sum $\sum_{n=1}^{m}\left|a_{m}\right|$ is positive. Furthermore,

$$
|\alpha|=\sum_{n=1}^{m}\left|a_{m}\right|+\sum_{n=m+1}^{\infty}\left|a_{n}\right|
$$

and the later infinite sum is non-negative by the above remarks. So we conclude that

$$
|\alpha| \geq \sum_{n=1}^{m}\left|a_{m}\right|>0
$$

Second, we will show that for $c \in \mathbb{R}$ we have $|c \alpha|=|c||\alpha|$. This is a basic observation about pulling constants out of sums and limits:

$$
\begin{aligned}
|c \alpha| & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|c a_{n}\right|=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}|c|\left|a_{n}\right| \\
& =\lim _{N \rightarrow \infty}|c| \sum_{n=1}^{N}\left|a_{n}\right|=|c| \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}\right|=|c||\alpha|
\end{aligned}
$$

Third, we need to show that if $\alpha=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\beta=\left\{b_{n}\right\}_{n \in \mathbb{N}}$ then $|\alpha+\beta| \leq|\alpha|+|\beta|$. This follows from from properties of sums and limits, and the triangle inequality:

$$
\begin{aligned}
|\alpha+\beta| & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}+b_{n}\right| \leq \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}\right|+\left|b_{n}\right| \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}\right|+\sum_{n=1}^{N}\left|b_{n}\right| \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|a_{n}\right|+\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|b_{n}\right|=|\alpha|+|\beta| .
\end{aligned}
$$

(b) Recall that a sequence $\left\{\alpha_{n}\right\}$ in a normed vector space is Cauchy if given any $\epsilon>0$, there is an $N \in \mathbb{N}$ so that $\left|\alpha_{m}-\alpha_{n}\right|<\epsilon$ for $m, n \geq N$. A normed vector space is complete if all Cauchy sequences converge. Show that ℓ^{1} is complete with the norm $|\cdot|$.

Solution: Let $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in ℓ^{1}. Each α_{n} is a sequence of real numbers which we denote by $\left\{a_{n, k}\right\}_{k \in \mathbb{N}}$.

Now suppose $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy. We first claim that for any $k \in \mathbb{N}$, the sequence $\left\{a_{n, k}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence (in \mathbb{R}). To verify this, fix k and let $\epsilon>0$. Then since $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy, there is an N so that $n, m>N$ implies $\left|\alpha_{n}-\alpha_{m}\right|<\epsilon$. Finally observe that for each $n, m>N$,

$$
\left|a_{n, k}-a_{m, k}\right| \leq \sum_{j \in \mathbb{N}}\left|a_{n, j}-a_{m, j}\right|=\left|\alpha_{n}-\alpha_{m}\right|<\epsilon
$$

In particular, $\left|a_{n, k}-a_{m, k}\right|<\epsilon$ for $m, n>N$ as needed to show that $\left\{a_{n, k}\right\}_{n \in \mathbb{N}}$ is Cauchy.
The previous paragraph showed that for each $k \in \mathbb{N},\left\{a_{n, k}\right\}_{n \in \mathbb{N}}$ is Cauchy. Since the real numbers are complete, this sequence has a limit, call it b_{k}. So we have a sequence $\beta=\left\{b_{k}\right\}_{k \in \mathbb{N}}$ with the property that $\lim _{n \rightarrow \infty} a_{n, k}=b_{k}$ for all k.

It remains to show that $\beta \in \ell^{1}$ and that $\alpha_{n} \rightarrow \beta$ as $n \rightarrow \infty$ in the ℓ^{1}-norm topology.
We make the following:
Claim 1. If $\epsilon>0$ and N is such that for $n, m>N$ we have $\left|\alpha_{n}-\alpha_{m}\right|<\epsilon$, then for $n>N,\left|\alpha_{n}-\beta\right|<3 \epsilon$. (Note that the infinite sums of a non-negative sequence such as
$\left|\alpha_{n}-\beta\right|=\sum_{k \in \mathbb{N}}\left|a_{n, k}-b_{k}\right|$ always exists in the sense that it must converge to either a real number or $+\infty$.)

Suppose that Claim 1 is false. Then we can choose $\epsilon>0$ and N so that for $n, m>N$ we have $\left|\alpha_{n}-\alpha_{m}\right|<\epsilon$, but there is an $n_{0}>N$ so that $\left|\alpha_{n_{0}}-\beta\right| \geq 3 \epsilon$. Then since

$$
\left|\alpha_{n_{0}}-\beta\right|=\sum_{k \in \mathbb{N}}\left|a_{n_{0}, k}-b_{k}\right|=\lim _{K \rightarrow \infty} \sum_{k=1}^{K}\left|a_{n_{0}, k}-b_{k}\right| \geq 3 \epsilon,
$$

there is a K so that

$$
\sum_{k=1}^{K}\left|a_{n_{0}, k}-b_{k}\right|>2 \epsilon
$$

Now observe that for any $k \in \mathbb{N}$ with $1 \leq k \leq K$, we have that $a_{m, k} \rightarrow b_{k}$ as $m \rightarrow \infty$. Because this is only a finite list of values of k, we can find an M so that $\left|a_{m, k}-b_{k}\right|<\frac{\epsilon}{K}$ for $m>M$ and each k with $1 \leq k \leq K$. By the triangle inequality, for any $m>M$,

$$
\begin{aligned}
\sum_{k=1}^{K}\left|a_{n_{0}, k}-b_{k}\right| & \leq \sum_{k=1}^{K}\left(\left|a_{n_{0}, k}-a_{m, k}\right|+\left|a_{m, k}-b_{k}\right|\right) \\
& \leq \sum_{k=1}^{K}\left(\left|a_{n}, k-a_{m, k}\right|+\frac{\epsilon}{K}\right) \\
& =\epsilon+\sum_{k=1}^{K}\left|a_{n_{0}, k}-a_{m, k}\right| \leq \epsilon+\left|\alpha_{n_{0}}-\alpha_{m}\right|<\epsilon+\epsilon=2 \epsilon
\end{aligned}
$$

But this contradicts the earlier statement that $\sum_{k=1}^{K}\left|a_{n_{0}, k}-b_{k}\right|>2 \epsilon$.
We will now show that $\beta \in \ell^{1}$. We need to show that $\sum_{k \in \mathbb{N}}\left|b_{k}\right|<\infty$. Since $\left\{\alpha_{n}\right\}$ is Cauchy, there is an N so that $n, m>N$ implies $\left|\alpha_{n}-\alpha_{m}\right|<1$. Then by Claim 1, we know that for $n>N$, we have $\left|\alpha_{n}-\beta\right|<3$. Fix such an n. Then by the triangle inequality,

$$
\sum_{k \in \mathbb{N}}\left|b_{k}\right| \leq \sum_{k \in \mathbb{N}}\left(\left|b_{k}-a_{n, k}\right|+\left|a_{n, k}\right|\right) \leq 3+\left|\alpha_{n}\right|<\infty
$$

Finally, we need to show that $\alpha_{n} \rightarrow \beta$. Choose $\epsilon>0$. We will find an N so that $n>N$ implies $\left|\alpha_{n}-\beta\right|<\epsilon$. Since $\left\{\alpha_{n}\right\}$ is Cauchy, we can find an N so that $n, m>N$ implies $\left|\alpha_{n}-\alpha_{m}\right|<\frac{\epsilon}{3}$. By Claim 1, for this N, we have $n>N$ implies that $\left|\alpha_{n}-\beta\right|<\epsilon$ as desired.
4. (Lang II.13) The diagonal Δ is the set of all points (x, x).
(a) Show that a space X is Hausdorff if and only if the diagonal is closed in $X \times X$.

Solution: Because this is a finite product, we recall that a basis for the product topology is given by sets of the form $U \times V$ where U and V are both open in X.

Suppose X is Hausdorff. We will show that the diagonal Δ is closed by showing that ($X \times$ $X) \backslash \Delta$ is open. To see this, it suffices to show that for any (x, y) with $x \neq y$, there is an open subset in $X \times X$ containing (x, y) which does not intersect Δ. (The compliment of Δ is then the union of such open sets, which must therefore be open.) Fix a pair (x, y) with $x \neq y$. Since X is Hausdorff, there are disjoint open sets U and V so that $x \in U$ and $y \in V$. Observe that disjointness implies that $U \times V$ does not intersect Δ. In summary, we have shown that (x, y) lies in the open set $U \times V$ which is contained in $X \backslash \Delta$.

Conversely, suppose that $(X \times X) \backslash \Delta$ is open. Let $(x, y) \in(X \times X) \backslash \Delta$. Then since the sets of the form $U \times V$ with $U, V \subset X$ open form a basis for the topology, we know that $(X \times X) \backslash \Delta$ is a union of such sets. It follows that there is a pair of open sets $U \times V$ so that $(x, y) \in U \times V$ and $U \times V \subset(X \times X) \backslash \Delta$ is open. We conclude that $U \times V$ is disjoint from the diagonal, which is the same as saying that $U \cap V=\emptyset$. Also $(x, y) \in U \times V$ is the same as $x \in U$ and $y \in V$. This verifies that X is Hausdorff.
(b) Show that a product of Hausdorff spaces is Hausdorff.

Solution: Suppose $\left\{X_{i}: i \in \Lambda\right\}$ is a collection of Hausdorff topological spaces, and endow $X=\prod_{i \in \Lambda} X_{i}$ with the product topology. Let $x \mapsto x_{i}$ denote the projection $X \rightarrow X_{i}$, which is continuous. (Continuity of these maps defines the topology.) Let $x, y \in X$ be distinct. Then, there is some $j \in \Lambda$ so that $x_{j} \neq y_{j}$. Then because the space X_{j} is Hausdorff, there are disjoint open sets $U, V \subset X_{j}$ so that $x_{j} \in U$ and $y_{j} \in V$. By continuity of the map π_{j}, the sets $\pi_{j}^{-1}(U)$ and $\pi_{j}^{-1}(V)$ are open. They are also disjoint sets since their images under the map π_{j} are disjoint. Further, $x \in \pi_{j}^{-1}(U)$ and $y \in \pi_{j}^{-1}(V)$, which verifies that X is Hausdorff.
5. (Lang II.5.5c) Let X be a metric space. For each $x \in X$, define the function f_{x} on X by $f_{x}(y)=d(x, y)$. Let $\|\cdot\|$ be the sup norm.
(a) Show that $d(x, y)=\left\|f_{x}-f_{y}\right\|$.

Solution: By definition,

$$
\left\|f_{x}-f_{y}\right\|=\sup \{|d(x, z)-d(y, z)|: z \in X\}
$$

By taking $z=y$, we observe that

$$
\left\|f_{x}-f_{y}\right\| \geq|d(x, y)-d(y, y)|=d(x, y)
$$

Now let $z \in X$ be arbitrary. We will show that $|d(x, z)-d(y, z)| \leq d(x, y)$ for every z. From this it follows that $\left\|f_{x}-f_{y}\right\| \leq d(x, y)$ as required. Fix $z \in X$. Observe that we have the triangle inequality, $d(x, y)+d(y, z) \geq d(x, z)$. It follows that

$$
d(x, z)-d(y, z) \leq d(x, y)
$$

We also have the triangle inequality, $d(y, x)+d(x, z) \geq d(y, z)$. From this it follows that

$$
d(x, z)-d(y, z) \geq-d(x, y)
$$

Taken together, we see that $|d(x, z)-d(y, z)| \leq d(x, y)$ as needed to show that $\left\|f_{x}-f_{y}\right\| \leq$ $d(x, y)$.
(b) Let a be a fixed element of X, and let $g_{x}=f_{x}-f_{a}$. Show that the map $x \mapsto g_{x}$ is a distancepreserving embedding of X into the normed space of bounded functions on X. (Remark: This shows that every metric space is isometric to a subset of a normed vector space.)

Solution: First we observe that g_{x} is a bounded function by the prior part. Indeed, for each

```
x\inX,
```

$$
\sup \left\{g_{x}(y): y \in X\right\}=\left\|g_{x}\right\|=\left\|f_{x}-f_{a}\right\|=d(x, a)
$$

with the last equality from the prior part. Furthermore, it is distance preserving:

$$
\left\|g_{x}-g_{y}\right\|=\left\|\left(f_{x}-f_{a}\right)-\left(f_{y}-f_{a}\right)\right\|=\left\|f_{x}-f_{y}\right\|=d(x, y)
$$

(It is clearly an embedding (i.e., it is injective), since if $x \neq y, d(x, y)>0$ and therefore $\left\|g_{x}-g_{y}\right\|>0$.)
6. (Lang II.5.8ab) Let X be a topological space and E a vector space with norm $|\cdot|$. Let $M(X, E)$ denote the set of all maps from X to E. Let $B(X, E)$ denote the set of bounded maps from X to E endowed with the sup norm defined by $\|f\|=\sup \{|f(x)|: x \in X\}$. Let $B C(X, E) \subset B(X, E)$ be the set of bounded continuous maps.
(a) Show that $B C(X, E)$ is closed in $B(X, E)$.

Solution: Observe that $B(X, E)$ is a normed vector space. So, to show $B C(X, E)$ is closed it suffices to prove that given any sequence $f_{n} \in B C(X, E)$ converging to $f \in B(X, E)$, then f is actually continuous.
(Remark: A sequence of functions $\left\{f_{n}\right\}$ converges to f uniformly if it converges to f in the sup norm $\|\cdot\|$ as in the statement of the problem. Thus, we are proving a general form of the theorem "a uniform limit of continuous functions is continuous.")

Suppose that $\left\{f_{n} \in B C(X, E)\right\}$ converges to $f \in B(X, E)$. To show f is continuous, it suffices to prove it is continuous at all points of X. So we will show that for all $x \in X$ and all $\epsilon>0$ there is a neighborhood U of x so that $|f(x)-f(u)|<\epsilon$ for all $u \in U$. Pick $x \in X$ and $\epsilon>0$. Then since $f_{n} \rightarrow f$, there is an N so that $\left|f_{N}-f\right|<\frac{\epsilon}{3}$. In other words,

$$
\sup \left\{\left|f_{N}(x)-f(x)\right|: x \in X\right\}<\frac{\epsilon}{3}
$$

Also by continuity of f_{N}, there is a neighborhood U of x so that $u \in U$ implies $\left|f_{N}(u)-f_{N}(x)\right|<$ $\frac{\epsilon}{3}$. Then for $u \in U$, we have:

$$
\left|f_{N}(u)-f_{N}(x)\right|<\frac{\epsilon}{3} . \quad\left|f_{N}(x)-f(x)\right|<\frac{\epsilon}{3} . \quad\left|f_{N}(u)-f(u)\right|<\frac{\epsilon}{3} .
$$

By use of the triangle inequality, we see that for $u \in U$,

$$
|f(x)-f(u)| \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(u)\right|+\left|f_{N}(u)-f(u)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
$$

Thus, f is continuous at x. Since x was arbitrary, f is continuous.
(b) A Banach space is a complete normed vector space. Show that if E is a Banach space, then $B(X, E)$ is complete.

Solution: Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $B(X, E)$. We claim that it follows that for any $x \in X$, the sequence $\left\{f_{n}(x)\right\}$ is a Cauchy sequence in E. This uses the definition of Cauchy sequence. Let $x \in X$ be arbitrary. To show $\left\{f_{n}(x)\right\}$ is Cauchy, we will show that for all $\epsilon>0$,
there is an N so that $n, m>N$ implies $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$. Fix some $\epsilon>0$. Since $\left\{f_{n}\right\}$ is Cauchy, there is an N so that $n, m>N$ implies $\left\|f_{n}-f_{m}\right\|<\epsilon$. So by definition of the sup norm, $\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|<\epsilon$ as desired.

Now since E is a Banach space and for each $x \in X$, the sequence $\left\{f_{n}(x)\right\}$ is Cauchy, there is a limit which we define to be $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. This defines a function $f: X \rightarrow E$.

We claim that $\left\{f_{n}\right\}$ converges to this new function f in the sup norm (or uniform) topology. Let $\epsilon>0$. We need to show that there is an N so that $n>N$ implies $\left\|f_{n}-f\right\|<\epsilon$. Since $\left\{f_{n}\right\}$ is Cauchy, we can define N so that $n, m>N$ implies that $\left\|f_{n}-f_{m}\right\|<\frac{\epsilon}{2}$. Fix $n>N$. Then because $f(x)$ is the limit of $f_{m}(x)$ as $m \rightarrow \infty$, for any $x \in X$ we have

$$
\left|f_{n}(x)-f(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right|,
$$

and thus $\left|f_{n}(x)-f(x)\right| \leq \frac{\epsilon}{2}$ because $n>N$ and by the above remarks. In particular, since x was arbitrary (and N did not depend on x), $n>N$ implies $\left|f_{n}-f\right|<\epsilon$, which verifies the definition of convergence.

It remains to show that f is bounded. Since f_{n} tends to f, there is an n so that $\left|f_{n}-f\right|<1$. Then $\left|f_{n}(x)-f(x)\right|<1$ for all $x \in X$. Then, by the triangle inequality, for all $x \in X$,

$$
|f(x)| \leq\left|f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right|<\left|f_{n}(x)\right|+1<\left|f_{n}\right|+1<\infty
$$

since $f_{n} \in B(X, E)$.
7. Let X be a topological space. Then, X is called separable if it has a countable base (or basis) for its topology. A set $A \subset X$ is dense (in X) if its closure $\bar{A}=X$.
(a) (Lang II.15) Show that a separable space has a countable dense subset.

Solution: Remark: Recall that $X \backslash \bar{A}=\operatorname{Int}(X \backslash A)$. So, by definition of the interior, A is dense if and only if A intersects every open subset of X.

Suppose X is separable. Then it has a base which can be written as $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$. We can assume without loss of generality that $B_{1}=\emptyset$. The for each integer $i \geq 2, B_{i} \neq \emptyset$, so we can choose a point $x_{i} \in B_{i}$.

We claim that $S=\left\{x_{i}: i \geq 2\right\}$ is dense in X. Let $U \subset X$ be non-empty and open. We must show that there is an point from S inside of U. Since \mathcal{B} is a basis, there is a subset $\Lambda \subset \mathbb{N}$ so that $U=\bigcup_{i \in \Lambda} B_{i}$. Then since U is non-empty, there must be an $i \in \Lambda$ with $i \geq 2$. Then $x_{i} \in B_{i} \subset U$. So S intersects U as claimed.
(b) (Lang II.16a) Show that if X is a metric space and has a countable dense subset, then X is separable.

Solution: Let A be a countable dense subset of X. For $x \in X$ and $r>0$, let $B_{r}(x)$ denote the open ball of radius r about x. Let \mathbb{Q}_{+}denote the positive rationals. Define

$$
\mathcal{B}=\left\{B_{r}(a): a \in A \text { and } r \in \mathbb{Q}_{+}\right\},
$$

where $B_{r}(a)$ denotes the open ball of radius r around $a \in X$. Then, \mathcal{B} is countable because both A and \mathbb{Q} are countable. $\left(\mathcal{B}\right.$ is canonically the image of $A \times \mathbb{Q}$ + under the map $(a, r) \mapsto B_{r}(a)$. So, it suffices to recall that \mathbb{Q}_{+}is countable, a product of countable sets is countable, and the image of a countable set is countable.)

We claim that \mathcal{B} is a basis for the metric topology. That is, we need to show that every open set in U is a union of elements of \mathcal{B}. Since the collection of all balls forms a basis for the metric topology, it suffices to show that for any open ball $U \subset X$ is the union of elements of \mathcal{B}. Let $x_{0} \in X$ and let $r_{0}>0$ be a real number, and define U to be the open ball centered at x_{0} of radius r_{0}. To prove this it suffices to find for each $x \in U$ an element $V_{x} \in \mathcal{B}$ so that $x \in V_{x}$ and $V_{x} \subset U$, because then $U=\bigcup_{x \in U} V_{x}$. Let $x \in U$. Then $d\left(x, x_{0}\right)<r_{0}$. Define

$$
\epsilon=\frac{1}{2}\left(r_{0}-d\left(x, x_{0}\right)\right)>0 .
$$

Let W be the open ball of radius ϵ about x. Then, by density of A there is a point $a \in A \cap W$. Observe that $d(a, x)<\epsilon$. Since the rationals are dense in \mathbb{R}, there is a rational r satisfying $d(a, x)<r<\epsilon$. Observe that by construction, $B_{r}(a) \in \mathcal{B}$ and $x \in B_{r}(a)$. We also claim that $B_{r}(a) \subset U$. To see this let $y \in B_{r}(a)$. Because of our choice of U, it suffices to prove that $d\left(y, x_{0}\right)<r_{0}$. By the triangle inequality, we have

$$
d\left(y, x_{0}\right) \leq d(y, a)+d(a, x)+d\left(x, x_{0}\right)<r+r+d\left(x, x_{0}\right)<2 \epsilon+d\left(x, x_{0}\right)=r_{0} .
$$

8. (Lang II.5.17). An open covering of a topological space X is a collection \mathcal{U} of open sets so that $X=\bigcup_{U \in \mathcal{U}} U$. A subcover is a subset $\mathcal{V} \subset \mathcal{U}$ which is still a cover (i.e., $X=\bigcup_{V \in \mathcal{V}} V$).
(a) Show that every open covering of a separable space has a countable subcovering.

Solution: Suppose X is separable. Then it has a countable basis $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$. Let \mathcal{U} be an open covering.

Define $J \subset \mathbb{N}$ to be the collection of all $i \in \mathbb{N}$ so that there is a $U \in \mathcal{U}$ with $B_{i} \subset U$. Then, for each $j \in J$, we can choose a $U_{j} \in \mathcal{U}$ with $B_{j} \subset U_{j}$. We claim that $\left\{U_{j}: j \in J\right\}$ is a countable subcover. It is clearly countable since any subset of the naturals is countable, and any image of a countable set is countable. It remains to prove that $\left\{U_{j}: j \in J\right\}$ covers X. Let $x \in X$. Then since \mathcal{U} is a covering, there is a $U \in \mathcal{U}$ so that $x \in U$. Then because \mathcal{B} is a basis, there is an $I \in \mathbb{N}$ so that $x \in B_{i}$ and $B_{i} \subset U$. But then by definition of J, we have $i \in J$. So, in particular, $x \in B_{i} \subset U_{i}$ and $i \in J$. Since x was arbitrary $X \subset \bigcup_{j \in J} U_{j}$.
(b) Show that a disjoint collection of open sets in a separable space is countable.

Solution: Suppose X is separable. Then it has a countable basis $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$. Let \mathcal{V} be a collection of disjoint open sets.

Similar to the prior part, let $J \subset \mathbb{N}$ be the collection of all $i \in \mathbb{N}$ so that $B_{i} \neq \emptyset$ and there is a $V \in \mathcal{V}$ with $B_{i} \subset V$. Observe that J is countable. We claim that for each $j \in J$, there is a unique $V \in \mathcal{V}$ so that $B_{j} \subset V$. To see this suppose $B_{j} \subset V$ and $B_{j} \subset V^{\prime}$ with $V, V^{\prime} \in \mathcal{V}$. Then, $B_{j} \subset V \cap V^{\prime}$ and since the sets in \mathcal{V} are disjoint $V=V^{\prime}$, which proves uniqueness. So, for $j \in J$, we define $V_{j} \in \mathcal{V}$ so that $B_{j} \subset V_{j}$. This defines a map $\psi: J \rightarrow \mathcal{V}$ via $j \mapsto V_{j}$. We
claim that the image of this map contains all non-empty elements of \mathcal{V}. From this it follows that \mathcal{V} is countable. (Any image of a countable set is countable, and a union of countable sets is countable.) To see surjectivity recall that \mathcal{B} is a basis. In particular, every non-empty $V \in \mathcal{V}$ is a union of elements of \mathcal{B}. If B_{j} is a non-empty element in this union, then $V=V_{j}$.
(c) Show that a base (or basis) for the topology of a separable space contains a countable base for the topology. (The red words were added to clarify the question.)

Solution: Suppose X is separable. Then it has a countable basis, which we may write as $\mathcal{C}=\left\{C_{i}: i \in \mathbb{N}\right\}$. Now let \mathcal{B} be another basis. We will show that there is a countable subset $\mathcal{S} \subset \mathcal{B}$ which is also a basis. That is, we need to choose a countable $\mathcal{S} \subset \mathcal{B}$ and show that every open set is a union of elements of \mathcal{S}. Since \mathcal{C} is also a basis, it will suffice to show that each C_{i} is a union of elements of \mathcal{S}. It is sufficient therefore to show that for each $i \in \mathbb{N}$, there is a countable $\mathcal{B}_{i} \subset \mathcal{B}$ so that

$$
C_{i}=\bigcup_{U \in \mathcal{B}_{i}} U
$$

Indeed, then $\mathcal{S}=\bigcup_{i \in \mathbb{N}} \mathcal{B}_{i}$ is a basis, and is countable because a countable union of countable sets is countable.

Let $i \in \mathbb{N}$ be arbitrary. It remains to show that there is a countable $\mathcal{B}_{i} \subset \mathcal{B}$ so that $C_{i}=$ $\bigcup_{U \in \mathcal{B}_{i}} U$. Since \mathcal{B} is a basis, we can choose a collection $\mathcal{D} \subset \mathcal{B}$ so that $C_{i}=\bigcup_{D \in \mathcal{D}} D$. Then because \mathcal{C} is a basis, for each $D \in \mathcal{D}$, there is a subset $J_{D} \subset \mathbb{N}$ so that $D=\bigcup_{j \in J_{D}} C_{j}$. Let $J=\bigcup_{D \in \mathcal{D}} J_{D} \subset \mathbb{N}$. Then observe that

$$
\bigcup_{j \in J} C_{j}=\bigcup_{D \in \mathcal{D}} \bigcup_{j \in J_{D}} C_{j}=\bigcup_{D \in \mathcal{D}} D=C_{i} .
$$

Now observe that for any $j \in J$, we have $j \in J_{D}$ for some $D \in \mathcal{D}$. In particular then $C_{j} \subset D$. So for each $j \in J$, we can choose some $D_{j} \in \mathcal{D}$ so that $C_{j} \subset D_{j}$. Thus, we have defined a map $J \rightarrow \mathcal{D}$ by $j \mapsto D_{j}$. We define \mathcal{B}_{i} to be the image of this map; $\mathcal{B}_{i}=\left\{D_{j}: j \in J\right\}$. Since J is countable, we see that \mathcal{B}_{i} is countable. We need to show that the union of elements of \mathcal{B}_{i} gives C_{i}. Clearly since $\mathcal{B}_{i} \subset \mathcal{D}$,

$$
\bigcup_{D \in \mathcal{B}_{i}} D \subset \bigcup_{D \in \mathcal{D}} D=C_{i} .
$$

For the reverse inclusion, observe that $C_{j} \subset D_{j}$ for $j \in J$ so

$$
C_{i}=\bigcup_{j \in J} C_{j} \subset \bigcup_{j \in J} D_{j}=\bigcup_{D \in \mathcal{B}_{i}} D
$$

Thus, $C_{i}=\bigcup_{D \in \mathcal{B}_{i}} D$ as required.

