
Math 70100: Functions of a Real Variable I
Homework 1, due Wednesday, September 10th.

1. (Based on Pugh 2.92) Let X be a topological space. Recall that a neighborhood N of x ∈ X is a subset
N ⊂ X so that there is an open set U ⊂ X with x ∈ U and U ⊂ N . A boundary point of a set A ⊂ X
is a point x ∈ X so that every neighborhood of x intersects both A and X r A. The boundary of A,
∂A, is the set of all boundary points of A.

(a) Show that ∂A = X r
(
Int(A) ∪ Int(X r A)

)
.

Solution: Recall that Int(A) is the union of all open sets contained in A. Suppose that
x 6∈ Int(A)∪ Int(XrA). This is equivalent to saying that no open set containing x is entirely
contained in A or X r A. In other words that x is a boundary point of A. This shows
X r

(
Int(A) ∪ Int(X r A)

)
= ∂A.

(b) Explain why ∂A is closed.

Solution: Interiors of sets are always open, so Int(A)∪Int(XrA) is open and its compliment,
∂A, is closed.

(c) Show that ∂∂A ⊂ ∂A.

Solution: It is more generally true that if B ⊂ X is a closed set, then ∂B ⊂ B. Because B
is closed, its compliment is open. So, ∂B = B r Int(B), which is clearly inside of B.

(d) Show that ∂∂∂A = ∂∂A.

Solution: Again, it is more generally true that if B ⊂ X is a closed set, then ∂∂B = ∂B.
Because B is closed, ∂B = B r Int(B). Since ∂B is closed, we can apply this trick again:

∂∂B = ∂
(
B r Int(B)

)
= (B r Int(B)

)
r Int

(
B r Int(B)

)
.

But, the interior of B r Int(B) is contained in the interior of B. So,

∂∂B ⊃ (B r Int(B)
)
r Int(B) = B r Int(B) = ∂B.

Using part (c), we have ∂∂B ⊂ ∂B, so together we see ∂∂B = ∂B.

(e) Given an example which illustrates that ∂∂A may not equal ∂A.

Solution: Let X = R and A = Q ∩ [0, 1]. Then ∂A = [0, 1] and ∂∂A = {0, 1}.

2. (Pugh 2.37) Let C denote the vector space of continuous functions from [0, 1] to R. This space can be
endowed with the sup (or L∞) norm,

|f | = sup {|f(x)| : x ∈ [0, 1]}

or the L1 norm,

‖f‖ =

∫ 1

0

|f(x)| dx.

Consider the identity map between id from (C, | · |) to (C, ‖ · ‖).



(a) Show that id is a continuous. (Thus it is a continuous linear bijection.)

Solution: Solution 1: (Based on the metric definition of continuity.) We will show that id
is continuous at each point of C. Let f ∈ C. We will show that for each ε > 0, there is a
δ > 0 so that |f − g| < δ implies ‖f − g‖ < ε. Choosing δ = ε suffices. Suppose |f − g| < ε.
Let c = |f − g| ≥ 0. Then, |f(x)− g(x)| ≤ c < ε for each x ∈ [0, 1]. So,

‖f − g‖ =

∫ 1

0

|f(x)− g(x)| dx ≤
∫ 1

0

c dx = c < ε.

Solution 2: (Bounded operator argument.) Because we are working with normed vector
spaces, it is sufficient to prove that id is a bounded linear operator. So, we will show that
there is an M > 0 so that for all f ∈ C, we have ‖f‖ < M |f |. Observe that by definition,
|f(x)| ≤ |f | for all x ∈ X. Therefore,

‖f‖ =

∫ 1

0

|f(x)| dx ≤
∫ 1

0

|f | dx = |f |.

Thus, id is a bounded linear operator (with M > 1) and therefore id is continuous.

(b) Show that the inverse id−1 is not continuous.

Solution: Recall that for a metric space the sequence definition for continuity is equivalent
to the topological definition. We will use the sequence definition here. We will find a sequence
of functions {fn} so that ‖fn‖ tends to zero (and thus fn tends to the zero function), but |fn|
does not tend to zero.

Define fn(x) = 1
nx+1

for integers n ≥ 1. Note that fn is positive and decreasing on [0, 1], so
|fn| = fn(0) = 1 for all n. On the other hand,

‖fn‖ =

∫ 1

0

1

nx+ 1
dx =

[
1

n
ln(nx+ 1)

]1

0

=
ln(n+ 1)

n
.

One can use L’Hôpital’s rule to show that ‖fn‖ → 0 as n→∞.

3. (Modified from Lang II.5.3a) Let `1 be the set of all sequences α = {an}n∈N of real numbers such that∑
n∈N |an| converges. Define

|α| =
∑
n∈N

|an|.

(a) Prove that | · | is a norm on `1.

Solution: We will verify that | · | satisfies the definition of a normed vector space. Recall that

|α| =
∑
n∈N

|an| = lim
N→∞

N∑
n=1

|an|.

First we claim that |α| ≥ 0, with equality only if an = 0 for all n ∈ N. Observe that the
sequence of partial sums

∑N
n=1 |an| are all non-negative since they are sums of non-negative

numbers. Any limit of non-negative numbers is non-negative, so |α| is non-negative. Now
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suppose that for some m ∈ N, we have am 6= 0. In this case the partial sum
∑m

n=1 |am| is
positive. Furthermore,

|α| =
m∑
n=1

|am|+
∞∑

n=m+1

|an|,

and the later infinite sum is non-negative by the above remarks. So we conclude that

|α| ≥
m∑
n=1

|am| > 0.

Second, we will show that for c ∈ R we have |cα| = |c||α|. This is a basic observation about
pulling constants out of sums and limits:

|cα| = limN→∞
∑N

n=1 |can| = limN→∞
∑N

n=1 |c||an|
= limN→∞ |c|

∑N
n=1 |an| = |c| limN→∞

∑N
n=1 |an| = |c||α|.

Third, we need to show that if α = {an}n∈N and β = {bn}n∈N then |α + β| ≤ |α| + |β|. This
follows from from properties of sums and limits, and the triangle inequality:

|α + β| = limN→∞
∑N

n=1 |an + bn| ≤ limN→∞
∑N

n=1 |an|+ |bn|
= limN→∞

∑N
n=1 |an|+

∑N
n=1 |bn|

= limN→∞
∑N

n=1 |an|+ limN→∞
∑N

n=1 |bn| = |α|+ |β|.

(b) Recall that a sequence {αn} in a normed vector space is Cauchy if given any ε > 0, there is an
N ∈ N so that |αm − αn| < ε for m,n ≥ N . A normed vector space is complete if all Cauchy
sequences converge. Show that `1 is complete with the norm | · |.

Solution: Let {αn}n∈N be a sequence in `1. Each αn is a sequence of real numbers which
we denote by {an,k}k∈N.

Now suppose {αn}n∈N is Cauchy. We first claim that for any k ∈ N, the sequence {an,k}n∈N is
a Cauchy sequence (in R). To verify this, fix k and let ε > 0. Then since {αn}n∈N is Cauchy,
there is an N so that n,m > N implies |αn−αm| < ε. Finally observe that for each n,m > N ,

|an,k − am,k| ≤
∑
j∈N

|an,j − am,j| = |αn − αm| < ε.

In particular, |an,k − am,k| < ε for m,n > N as needed to show that {an,k}n∈N is Cauchy.

The previous paragraph showed that for each k ∈ N, {an,k}n∈N is Cauchy. Since the real
numbers are complete, this sequence has a limit, call it bk. So we have a sequence β = {bk}k∈N
with the property that limn→∞ an,k = bk for all k.

It remains to show that β ∈ `1 and that αn → β as n→∞ in the `1-norm topology.

We make the following:
Claim 1. If ε > 0 and N is such that for n,m > N we have |αn − αm| < ε, then for
n > N , |αn − β| < 3ε. (Note that the infinite sums of a non-negative sequence such as
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|αn − β| =
∑

k∈N |an,k − bk| always exists in the sense that it must converge to either a real
number or +∞.)

Suppose that Claim 1 is false. Then we can choose ε > 0 and N so that for n,m > N we have
|αn − αm| < ε, but there is an n0 > N so that |αn0 − β| ≥ 3ε. Then since

|αn0 − β| =
∑
k∈N

|an0,k − bk| = lim
K→∞

K∑
k=1

|an0,k − bk| ≥ 3ε,

there is a K so that
K∑
k=1

|an0,k − bk| > 2ε.

Now observe that for any k ∈ N with 1 ≤ k ≤ K, we have that am,k → bk as m→∞. Because
this is only a finite list of values of k, we can find an M so that |am,k − bk| < ε

K
for m > M

and each k with 1 ≤ k ≤ K. By the triangle inequality, for any m > M ,∑K
k=1 |an0,k − bk| ≤

∑K
k=1

(
|an0,k − am,k|+ |am,k − bk|

)
≤

∑K
k=1

(
|an0,k − am,k|+ ε

K

)
= ε+

∑K
k=1 |an0,k − am,k| ≤ ε+ |αn0 − αm| < ε+ ε = 2ε.

But this contradicts the earlier statement that
∑K

k=1 |an0,k − bk| > 2ε.

We will now show that β ∈ `1. We need to show that
∑

k∈N |bk| <∞. Since {αn} is Cauchy,
there is an N so that n,m > N implies |αn − αm| < 1. Then by Claim 1, we know that for
n > N , we have |αn − β| < 3. Fix such an n. Then by the triangle inequality,∑

k∈N

|bk| ≤
∑
k∈N

(
|bk − an,k|+ |an,k|

)
≤ 3 + |αn| <∞.

Finally, we need to show that αn → β. Choose ε > 0. We will find an N so that n > N implies
|αn−β| < ε. Since {αn} is Cauchy, we can find an N so that n,m > N implies |αn−αm| < ε

3
.

By Claim 1, for this N , we have n > N implies that |αn − β| < ε as desired.

4. (Lang II.13) The diagonal ∆ is the set of all points (x, x).

(a) Show that a space X is Hausdorff if and only if the diagonal is closed in X ×X.

Solution: Because this is a finite product, we recall that a basis for the product topology is
given by sets of the form U × V where U and V are both open in X.

Suppose X is Hausdorff. We will show that the diagonal ∆ is closed by showing that (X ×
X) r ∆ is open. To see this, it suffices to show that for any (x, y) with x 6= y, there is an
open subset in X ×X containing (x, y) which does not intersect ∆. (The compliment of ∆ is
then the union of such open sets, which must therefore be open.) Fix a pair (x, y) with x 6= y.
Since X is Hausdorff, there are disjoint open sets U and V so that x ∈ U and y ∈ V . Observe
that disjointness implies that U × V does not intersect ∆. In summary, we have shown that
(x, y) lies in the open set U × V which is contained in X r ∆.
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Conversely, suppose that (X × X) r ∆ is open. Let (x, y) ∈ (X × X) r ∆. Then since the
sets of the form U × V with U, V ⊂ X open form a basis for the topology, we know that
(X ×X)r∆ is a union of such sets. It follows that there is a pair of open sets U × V so that
(x, y) ∈ U × V and U × V ⊂ (X ×X) r ∆ is open. We conclude that U × V is disjoint from
the diagonal, which is the same as saying that U ∩ V = ∅. Also (x, y) ∈ U × V is the same as
x ∈ U and y ∈ V . This verifies that X is Hausdorff.

(b) Show that a product of Hausdorff spaces is Hausdorff.

Solution: Suppose {Xi : i ∈ Λ} is a collection of Hausdorff topological spaces, and endow
X =

∏
i∈ΛXi with the product topology. Let x 7→ xi denote the projection X → Xi, which is

continuous. (Continuity of these maps defines the topology.) Let x, y ∈ X be distinct. Then,
there is some j ∈ Λ so that xj 6= yj. Then because the space Xj is Hausdorff, there are disjoint
open sets U, V ⊂ Xj so that xj ∈ U and yj ∈ V . By continuity of the map πj, the sets π−1

j (U)

and π−1
j (V ) are open. They are also disjoint sets since their images under the map πj are

disjoint. Further, x ∈ π−1
j (U) and y ∈ π−1

j (V ), which verifies that X is Hausdorff.

5. (Lang II.5.5c) Let X be a metric space. For each x ∈ X, define the function fx on X by fx(y) = d(x, y).
Let ‖ · ‖ be the sup norm.

(a) Show that d(x, y) = ‖fx − fy‖.

Solution: By definition,

‖fx − fy‖ = sup {|d(x, z)− d(y, z)| : z ∈ X}.

By taking z = y, we observe that

‖fx − fy‖ ≥ |d(x, y)− d(y, y)| = d(x, y).

Now let z ∈ X be arbitrary. We will show that |d(x, z)− d(y, z)| ≤ d(x, y) for every z. From
this it follows that ‖fx − fy‖ ≤ d(x, y) as required. Fix z ∈ X. Observe that we have the
triangle inequality, d(x, y) + d(y, z) ≥ d(x, z). It follows that

d(x, z)− d(y, z) ≤ d(x, y).

We also have the triangle inequality, d(y, x) + d(x, z) ≥ d(y, z). From this it follows that

d(x, z)− d(y, z) ≥ −d(x, y).

Taken together, we see that |d(x, z) − d(y, z)| ≤ d(x, y) as needed to show that ‖fx − fy‖ ≤
d(x, y).

(b) Let a be a fixed element of X, and let gx = fx − fa. Show that the map x 7→ gx is a distance-
preserving embedding of X into the normed space of bounded functions on X. (Remark: This
shows that every metric space is isometric to a subset of a normed vector space.)

Solution: First we observe that gx is a bounded function by the prior part. Indeed, for each
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x ∈ X,
sup{gx(y) : y ∈ X} = ‖gx‖ = ‖fx − fa‖ = d(x, a),

with the last equality from the prior part. Furthermore, it is distance preserving:

‖gx − gy‖ = ‖(fx − fa)− (fy − fa)‖ = ‖fx − fy‖ = d(x, y).

(It is clearly an embedding (i.e., it is injective), since if x 6= y, d(x, y) > 0 and therefore
‖gx − gy‖ > 0.)

6. (Lang II.5.8ab) Let X be a topological space and E a vector space with norm | · |. Let M(X,E) denote
the set of all maps from X to E. Let B(X,E) denote the set of bounded maps from X to E endowed
with the sup norm defined by ‖f‖ = sup{|f(x)| : x ∈ X}. Let BC(X,E) ⊂ B(X,E) be the set of
bounded continuous maps.

(a) Show that BC(X,E) is closed in B(X,E).

Solution: Observe that B(X,E) is a normed vector space. So, to show BC(X,E) is closed
it suffices to prove that given any sequence fn ∈ BC(X,E) converging to f ∈ B(X,E), then
f is actually continuous.

(Remark: A sequence of functions {fn} converges to f uniformly if it converges to f in the
sup norm ‖ · ‖ as in the statement of the problem. Thus, we are proving a general form of the
theorem “a uniform limit of continuous functions is continuous.”)

Suppose that {fn ∈ BC(X,E)} converges to f ∈ B(X,E). To show f is continuous, it suffices
to prove it is continuous at all points of X. So we will show that for all x ∈ X and all ε > 0
there is a neighborhood U of x so that |f(x)− f(u)| < ε for all u ∈ U . Pick x ∈ X and ε > 0.
Then since fn → f , there is an N so that |fN − f | < ε

3
. In other words,

sup {|fN(x)− f(x)| : x ∈ X} < ε

3
.

Also by continuity of fN , there is a neighborhood U of x so that u ∈ U implies |fN(u)−fN(x)| <
ε
3
. Then for u ∈ U , we have:

|fN(u)− fN(x)| < ε

3
. |fN(x)− f(x)| < ε

3
. |fN(u)− f(u)| < ε

3
.

By use of the triangle inequality, we see that for u ∈ U ,

|f(x)− f(u)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(u)|+ |fN(u)− f(u)| < ε

3
+
ε

3
+
ε

3
= ε.

Thus, f is continuous at x. Since x was arbitrary, f is continuous.

(b) A Banach space is a complete normed vector space. Show that if E is a Banach space, then
B(X,E) is complete.

Solution: Let {fn} be a Cauchy sequence in B(X,E). We claim that it follows that for any
x ∈ X, the sequence {fn(x)} is a Cauchy sequence in E. This uses the definition of Cauchy
sequence. Let x ∈ X be arbitrary. To show {fn(x)} is Cauchy, we will show that for all ε > 0,
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there is an N so that n,m > N implies |fn(x) − fm(x)| < ε. Fix some ε > 0. Since {fn} is
Cauchy, there is an N so that n,m > N implies ‖fn − fm‖ < ε. So by definition of the sup
norm, |fn(x)− fm(x)| ≤ ‖fn − fm‖ < ε as desired.

Now since E is a Banach space and for each x ∈ X, the sequence {fn(x)} is Cauchy, there is
a limit which we define to be f(x) = limn→∞ fn(x). This defines a function f : X → E.

We claim that {fn} converges to this new function f in the sup norm (or uniform) topology.
Let ε > 0. We need to show that there is an N so that n > N implies ‖fn − f‖ < ε. Since
{fn} is Cauchy, we can define N so that n,m > N implies that ‖fn − fm‖ < ε

2
. Fix n > N .

Then because f(x) is the limit of fm(x) as m→∞, for any x ∈ X we have

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)|,

and thus |fn(x) − f(x)| ≤ ε
2

because n > N and by the above remarks. In particular, since
x was arbitrary (and N did not depend on x), n > N implies |fn − f | < ε, which verifies the
definition of convergence.

It remains to show that f is bounded. Since fn tends to f , there is an n so that |fn − f | < 1.
Then |fn(x)− f(x)| < 1 for all x ∈ X. Then, by the triangle inequality, for all x ∈ X,

|f(x)| ≤ |fn(x)|+ |fn(x)− f(x)| < |fn(x)|+ 1 < |fn|+ 1 <∞,

since fn ∈ B(X,E).

7. Let X be a topological space. Then, X is called separable if it has a countable base (or basis) for its
topology. A set A ⊂ X is dense (in X) if its closure Ā = X.

(a) (Lang II.15) Show that a separable space has a countable dense subset.

Solution: Remark: Recall that X r Ā = Int(X r A). So, by definition of the interior, A
is dense if and only if A intersects every open subset of X.

Suppose X is separable. Then it has a base which can be written as B = {Bi : i ∈ N}. We
can assume without loss of generality that B1 = ∅. The for each integer i ≥ 2, Bi 6= ∅, so we
can choose a point xi ∈ Bi.

We claim that S = {xi : i ≥ 2} is dense in X. Let U ⊂ X be non-empty and open. We must
show that there is an point from S inside of U . Since B is a basis, there is a subset Λ ⊂ N
so that U =

⋃
i∈ΛBi. Then since U is non-empty, there must be an i ∈ Λ with i ≥ 2. Then

xi ∈ Bi ⊂ U . So S intersects U as claimed.

(b) (Lang II.16a) Show that if X is a metric space and has a countable dense subset, then X is
separable.

Solution: Let A be a countable dense subset of X. For x ∈ X and r > 0, let Br(x) denote
the open ball of radius r about x. Let Q+ denote the positive rationals. Define

B = {Br(a) : a ∈ A and r ∈ Q+},
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whereBr(a) denotes the open ball of radius r around a ∈ X. Then, B is countable because both
A and Q are countable. (B is canonically the image of A×Q+ under the map (a, r) 7→ Br(a).
So, it suffices to recall that Q+ is countable, a product of countable sets is countable, and the
image of a countable set is countable.)

We claim that B is a basis for the metric topology. That is, we need to show that every open
set in U is a union of elements of B. Since the collection of all balls forms a basis for the
metric topology, it suffices to show that for any open ball U ⊂ X is the union of elements of
B. Let x0 ∈ X and let r0 > 0 be a real number, and define U to be the open ball centered
at x0 of radius r0. To prove this it suffices to find for each x ∈ U an element Vx ∈ B so that
x ∈ Vx and Vx ⊂ U , because then U =

⋃
x∈U Vx. Let x ∈ U . Then d(x, x0) < r0. Define

ε =
1

2

(
r0 − d(x, x0)

)
> 0.

Let W be the open ball of radius ε about x. Then, by density of A there is a point a ∈ A∩W .
Observe that d(a, x) < ε. Since the rationals are dense in R, there is a rational r satisfying
d(a, x) < r < ε. Observe that by construction, Br(a) ∈ B and x ∈ Br(a). We also claim that
Br(a) ⊂ U . To see this let y ∈ Br(a). Because of our choice of U , it suffices to prove that
d(y, x0) < r0. By the triangle inequality, we have

d(y, x0) ≤ d(y, a) + d(a, x) + d(x, x0) < r + r + d(x, x0) < 2ε+ d(x, x0) = r0.

8. (Lang II.5.17). An open covering of a topological space X is a collection U of open sets so that
X =

⋃
U∈U U . A subcover is a subset V ⊂ U which is still a cover (i.e., X =

⋃
V ∈V V ).

(a) Show that every open covering of a separable space has a countable subcovering.

Solution: Suppose X is separable. Then it has a countable basis B = {Bi : i ∈ N}. Let U
be an open covering.

Define J ⊂ N to be the collection of all i ∈ N so that there is a U ∈ U with Bi ⊂ U . Then,
for each j ∈ J , we can choose a Uj ∈ U with Bj ⊂ Uj. We claim that {Uj : j ∈ J} is a
countable subcover. It is clearly countable since any subset of the naturals is countable, and
any image of a countable set is countable. It remains to prove that {Uj : j ∈ J} covers X.
Let x ∈ X. Then since U is a covering, there is a U ∈ U so that x ∈ U . Then because B is
a basis, there is an I ∈ N so that x ∈ Bi and Bi ⊂ U . But then by definition of J , we have
i ∈ J . So, in particular, x ∈ Bi ⊂ Ui and i ∈ J . Since x was arbitrary X ⊂

⋃
j∈J Uj.

(b) Show that a disjoint collection of open sets in a separable space is countable.

Solution: Suppose X is separable. Then it has a countable basis B = {Bi : i ∈ N}. Let V
be a collection of disjoint open sets.

Similar to the prior part, let J ⊂ N be the collection of all i ∈ N so that Bi 6= ∅ and there is
a V ∈ V with Bi ⊂ V . Observe that J is countable. We claim that for each j ∈ J , there is
a unique V ∈ V so that Bj ⊂ V . To see this suppose Bj ⊂ V and Bj ⊂ V ′ with V, V ′ ∈ V .
Then, Bj ⊂ V ∩ V ′ and since the sets in V are disjoint V = V ′, which proves uniqueness. So,
for j ∈ J , we define Vj ∈ V so that Bj ⊂ Vj. This defines a map ψ : J → V via j 7→ Vj. We
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claim that the image of this map contains all non-empty elements of V . From this it follows
that V is countable. (Any image of a countable set is countable, and a union of countable
sets is countable.) To see surjectivity recall that B is a basis. In particular, every non-empty
V ∈ V is a union of elements of B. If Bj is a non-empty element in this union, then V = Vj.

(c) Show that a base (or basis) for the topology of a separable space contains a countable base for
the topology. (The red words were added to clarify the question.)

Solution: Suppose X is separable. Then it has a countable basis, which we may write as
C = {Ci : i ∈ N}. Now let B be another basis. We will show that there is a countable subset
S ⊂ B which is also a basis. That is, we need to choose a countable S ⊂ B and show that
every open set is a union of elements of S. Since C is also a basis, it will suffice to show that
each Ci is a union of elements of S. It is sufficient therefore to show that for each i ∈ N, there
is a countable Bi ⊂ B so that

Ci =
⋃
U∈Bi

U.

Indeed, then S =
⋃
i∈N Bi is a basis, and is countable because a countable union of countable

sets is countable.

Let i ∈ N be arbitrary. It remains to show that there is a countable Bi ⊂ B so that Ci =⋃
U∈Bi U. Since B is a basis, we can choose a collection D ⊂ B so that Ci =

⋃
D∈DD. Then

because C is a basis, for each D ∈ D, there is a subset JD ⊂ N so that D =
⋃
j∈JD Cj. Let

J =
⋃
D∈D JD ⊂ N. Then observe that⋃

j∈J

Cj =
⋃
D∈D

⋃
j∈JD

Cj =
⋃
D∈D

D = Ci.

Now observe that for any j ∈ J , we have j ∈ JD for some D ∈ D. In particular then Cj ⊂ D.
So for each j ∈ J , we can choose some Dj ∈ D so that Cj ⊂ Dj. Thus, we have defined a map
J → D by j 7→ Dj. We define Bi to be the image of this map; Bi = {Dj : j ∈ J}. Since J
is countable, we see that Bi is countable. We need to show that the union of elements of Bi
gives Ci. Clearly since Bi ⊂ D, ⋃

D∈Bi

D ⊂
⋃
D∈D

D = Ci.

For the reverse inclusion, observe that Cj ⊂ Dj for j ∈ J so

Ci =
⋃
j∈J

Cj ⊂
⋃
j∈J

Dj =
⋃
D∈Bi

D.

Thus, Ci =
⋃
D∈Bi D as required.
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