Math 70100: Functions of a Real Variable I

 Homework 12, due Wednesday, December 10th.We let L^{1} denote the collection space of integrable functions from $\mathbb{R} \rightarrow \mathbb{R}$.

1. (Folland §2.3 \# 20) (A generalized Dominated Convergence Theorem) Let $f, g \in L^{1}$ and let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences in L^{1}. Show that if $\left|f_{n}\right| \leq g_{n}, f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ pointwise a.e., and $\lim _{n \rightarrow \infty} \int g_{n}=\int g$, then $\int f=\lim _{n \rightarrow \infty} \int f_{n}$. (Hint: Rework the proof of the dominated convergence theorem, either in class or following Folland. Remark: The condition that $\int g_{n} \rightarrow$ $\int g$ is necessary as the example $g_{n}=\frac{1}{n} \chi_{[1, n]}$ illustrates.)

Solution: \quad Since $-g_{n} \leq f_{n} \leq g_{n}$, we observe that $g_{n}+f_{n} \geq 0$ and $g_{n}-f_{n} \geq 0$. The sequence of functions in N given by

$$
h_{N}=\inf _{n \geq N} g_{n}+f_{n}
$$

is therefore non-negative and increases pointwise to $g+f$ almost everywhere. Observe that h_{N} is measurable and dominated by the integrable function $g+f$. Therefore, h_{N} is integrable. Then by the monotone convergence theorem,

$$
\int(g+f)=\lim _{N \rightarrow \infty} \int \inf _{n \geq N}\left(g_{n}+f_{n}\right)
$$

Similar remarks about the sequence $g_{n}-f_{n}$ indicate that

$$
\int(g-f)=\lim _{N \rightarrow \infty} \int \inf _{n \geq N}\left(g_{n}-f_{n}\right)
$$

Observe that we have

$$
\inf _{n \geq N}\left(g_{n}+f_{n}\right) \leq g_{N}+f_{N} \quad \text { and } \quad \inf _{n \geq N}\left(g_{n}-f_{n}\right) \leq g_{N}-f_{N}
$$

It follows that

$$
-g_{N}+\inf _{n \geq N}\left(g_{n}+f_{n}\right) \leq f_{N} \leq g_{N}-\inf _{n \geq N}\left(g_{n}-f_{n}\right)
$$

Integrating everything yields:

$$
-\int g_{N}+\int \inf _{n \geq N}\left(g_{n}+f_{n}\right) \leq \int f_{N} \leq \int g_{N}-\int \inf _{n \geq N}\left(g_{n}-f_{n}\right)
$$

Observe that the limit of the left hands side is

$$
\lim _{N \rightarrow \infty}\left[-\int g_{N}+\int \inf _{n \geq N}\left(g_{n}+f_{n}\right)\right]=-\int g+\int(g+f)=\int f
$$

Similarly, the limit of the right hand side is

$$
\lim _{N \rightarrow \infty}\left[\int g_{N}-\int \inf _{n \geq N}\left(g_{n}-f_{n}\right)\right]=\int g-\int(g-f)=\int f
$$

So, by the squeeze theorem, we see $\lim _{N \rightarrow \infty} f_{N}=\int f$.
2. (Folland $\S 2.3$ \# 21) Suppose $\left\{f_{n} \in L^{1}\right\}$ is a sequence of functions converging to $f \in L^{1}$ pointwise a.e., then $\int\left|f_{n}-f\right| \rightarrow 0$ if and only if $\int\left|f_{n}\right| \rightarrow \int|f|$. (Hint: Use the prior exercise. Remark: All the functions need to be integrable here.)

Solution: First suppose that $\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| \rightarrow 0$. Observe that $-\left|f_{n}-f\right| \leq\left|f_{n}\right|-|f| \leq$ $\left|f_{n}-f\right|$ pointwise. So, for every n,

$$
-\int\left|f_{n}-f\right| \leq \int\left|f_{n}\right|-|f| \leq \int\left|f_{n}-f\right|
$$

By hypothesis, the left and right sides tend to zero as $n \rightarrow \infty$, so by the squeeze theorem $\lim _{n \rightarrow \infty} \int\left|f_{n}\right|-|f|=0$. This is equivalent to saying $\int\left|f_{n}\right| \rightarrow \int|f|$.

Now suppose that $\int\left|f_{n}\right| \rightarrow \int|f|$. Set $\phi_{n}=\left|f_{n}-f\right|$ and $\psi_{n}=\left|f_{n}\right|+|f|$. Clearly $\phi_{n} \leq \psi_{n}$ everywhere. By our hypothesis that $f_{n} \rightarrow f$ pointwise a.e., we know that $\phi_{n} \rightarrow 0$ and $\psi_{n} \rightarrow 2|f|$ pointwise a.e.. Also, because $\int\left|f_{n}\right| \rightarrow \int|f|$, we know that $\int \psi_{n} \rightarrow \int 2|f|$. We conclude from the prior part that $\int \phi_{n} \rightarrow \int 0=0$, or equivalently, $\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|=0$.
3. (Folland §2.3 \# 19b) Find a sequence of integrable functions $f_{n}: \mathbb{R} \rightarrow[0, \infty)$ so that $\left\{f_{n}\right\}$ converges uniformly to $f: \mathbb{R} \rightarrow[0, \infty)$ but f is not integrable.

Solution: Let $f_{n}(x)=\frac{1}{x} \chi_{[1, n]}(x)$, which is integrable because it is discontinuous at only two points, is bounded, and compactly supported. Let $f=\frac{1}{x} \chi_{[1, \infty)}(x)$. Then

$$
f-f_{n}=\frac{1}{x} \chi_{(n, \infty)},
$$

which is bounded in absolute value by $\frac{1}{n}$ which tends to zero. Thus $f_{n} \rightarrow f$ uniformly. Furthermore,

$$
\int f_{n}=\int_{1}^{n} \frac{1}{x} d x=\ln n
$$

Since $f_{n} \leq f$ for all n, we see that $\int f \geq \ln n$ for all n. Thus $\int f=+\infty$, and f is not integrable.
4. (Folland §2.3 \# 26) Show that if $f \in L^{1}$ and $F(x)=\int_{-\infty}^{x} f(x) d \lambda(x)$, then $F: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

Solution: First we will show it for the case where $f: \mathbb{R} \rightarrow[0, \infty)$ is integrable. For $a<b$ define the strip

$$
S_{a, b}=\{(x, y): a \leq x<b\} .
$$

Observe that if $a<b$, then

$$
F(b)-F(a)=\lambda_{2}\left(\mathcal{U} f \cap S_{a, b}\right) .
$$

Fix a, and observe that

$$
\bigcap_{b>a}\left(\mathcal{U} f \cap S_{a, b}\right)=\mathcal{U} f \cap\{(x, y): x=a\} .
$$

So by measure continuity, we have

$$
\lim _{b \rightarrow a^{+}} F(b)-F(a)=\lambda_{2}(\mathcal{U} f \cap\{(x, y): x=a\})=0 .
$$

Similarly, fixing b, we see

$$
\bigcap_{a<b}\left(\mathcal{U} f \cap S_{a, b}\right)=\emptyset
$$

and so by measure continuity

$$
\lim _{a \rightarrow b^{-}} F(b)-F(a)=\lambda_{2}(\emptyset)=0
$$

By combining these statements, we conclude that $\lim _{y \rightarrow x} F(y)=F(x)$.
Now consider the statement for $f: \mathbb{R} \rightarrow \mathbb{R}$ integrable. Consider the positive and negative parts f_{+}and f_{-}, and recall that both are positive functions, $f=f_{+}-f_{-}$and $\int f=$ $\int f_{+}-\int f_{-}$. Then, by applying the observations above,

$$
\lim _{y \rightarrow x} F(y)=\lim _{y \rightarrow x} \int_{-\infty}^{y} f_{+}-\int_{-\infty}^{y} f_{-}=\int_{-\infty}^{x} f_{+}-\int_{-\infty}^{x} f_{-}=F(x) .
$$

5. (Pugh Chapter $6 \# 60 a)$ Let $E \subset \mathbb{R}$ be a measurable set having positive Lebesgue measure. Prove Steinhaus' Theorem: E meets its t-translates for all sufficiently small $t \in \mathbb{R}$. (Hint: density points.)

Solution: Let p be a density point for E. Then we can choose a ball $B=(p-r, p+r)$ of radius r centered at p so that

$$
\lambda(B \cap E)>\frac{2}{3} \lambda(B)=\frac{4 r}{3} .
$$

Now suppose $t \in \mathbb{R}$ and $0 \leq t<\frac{r}{3}$. Let $C=B \backslash E$. It then follows that $\lambda(C) \leq \frac{2 r}{3}$. We will show that $E \cap(E+t) \neq \emptyset$ by showing that $(E \cap B) \cap((E \cap B)+t)) \neq \emptyset$. Here $+t$ denotes translation by t. Observe that both sets $A=E \cap B$ and $B=(E \cap B)+t$ are contained in the interval $I=(p-r, p+r+t)$, and the measure of their compliments is

$$
\lambda(I \backslash A)=\lambda(I \backslash B)=\lambda(C)+t<r .
$$

It follows that $\lambda(I \backslash(A \cup B))<2 r$. Therefore,

$$
\lambda(A \cap B)=\lambda(I)-\lambda(I \backslash(A \cup B))>(2 r+t)-2 r=t \geq 0
$$

Since $\lambda(A \cap B)$ measure is positive, $A \cap B \neq \emptyset$ and hence $E \cap(E+t) \neq \emptyset$.

We proved the result for small non-negative t. By reflecting E in the origin, we see that it also holds for small non-positive t.
6. (Zakeri's Homework 11 \# 4) Let $f \in L^{1}$, and let E be a Lebesgue measurable set of positive measure. The average value of f on E is

$$
A(f ; E)=\frac{1}{\lambda(E)} \int_{E} f
$$

Prove that if $A(f ; E) \in[a, b]$ for every such E, then $f(x) \in[a, b]$ for almost every x.

Solution: Consider the set

$$
A=\{x \in \mathbb{R}: f(x) \notin[a, b]\}
$$

which is measurable because $f \in L^{1}$. We prove the contrapositive. We will show that if $\lambda(A)>0$, then there is a set E of positive measure so that $A(f ; E) \notin[a, b]$.

Observe that A is naturally the union of two disjoint measurable sets, $A=A_{+} \sqcup A_{-}$with

$$
A_{+}=\{x \in \mathbb{R}: f(x)>b\} \quad \text { and } \quad A_{-}=\{x \in \mathbb{R}: f(x)<a\} .
$$

Observe that $\lambda\left(A_{+}\right)+\lambda\left(A_{-}\right)=\lambda(A)>0$.
Assume that $\lambda\left(A_{+}\right)>0$. (It could be that $\lambda\left(A_{+}\right)=\infty$.) Observe that $A_{+}=\bigcup_{n}\left(A_{+} \cap\right.$ $[-n, n])$. Measure continuity then tells us that $\lambda\left(A_{+}\right)=\lim _{n \rightarrow \infty} \lambda\left(A_{+} \cap[-n, n]\right)$. Then there is some n so that the set $E=A_{+} \cap[-n, n]$ satisfies $0<\lambda(E)<\infty$. We claim that this choice works. We will use the fact that when the integral of a non-negative function is zero, the function must be zero almost everywhere. Since $f-b$ is a positive function on E, it must have positive integral. Therefore

$$
\int_{E}(f-b)>0 \quad \text { and thus } \int_{E} f>b \lambda(E) .
$$

We have shown that $A(f ; E)=\frac{1}{\lambda(E)} \int_{E} f>b$.
The same argument works for the case when $\lambda\left(A_{-}\right)>0$.
7. (Spring 2013 Qual) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on $[0,1]$, and satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$ with $f(0)=1$. Prove that $f(x)=e^{a x}$ for some constant $a \in \mathbb{R}$.

Solution: First observe that f never non-positive values. It can't take the value zero because if $f(x)=0$ then

$$
1=f(x-x)=f(x) f(-x)=0
$$

which is a contradiction. Similarly, f cannot take negative values because $f(x)=f\left(\frac{x}{2}\right)^{2} \geq 0$.

The other important observation is that for every $\frac{p}{q} \in \mathbb{Q}$ and each $x \in \mathbb{R}$, we have

$$
f\left(\frac{p}{q} x\right)=f(x)^{\frac{p}{q}} .
$$

This further implies that if $f(x)=e^{a x}$ then $f\left(\frac{p}{q} x\right)=e^{a(p / q x)}$ for all rationals $\frac{p}{q}$, which will be what we use in the proof. To see this, first observe it holds for natural numbers $n: f(n x)=f(x)^{n}$. For positive rationals $\frac{p}{q}$, observe that the above implies $f(p x)=f(x)^{p}$ and $f(p x)^{q}=f\left(\frac{p x}{q}\right)$. By combining these expressions, we get the above result for positive rationals. The equation also clearly holds when $\frac{p}{q}=0$ since $f(0)=1$. We can extend to the negative rationals by observing that $f(x) f(-x)=1$.

Since $f(1 / 2)$ is positive, there is a unique real number so that $f(1 / 2)=e^{a / 2}$. Now suppose that there is an x_{0} so that $f\left(x_{0}\right) \neq e^{a x_{0}}$. We have $f\left(x_{0}\right)=e^{b x_{0}}$ for some $b \neq a$. We will derive a contradiction to this. By considering rational multiples of x_{0}, we obtain as sequence of real numbers $\left\{x_{n}=\frac{p_{n} x_{0}}{q_{n}}\right\}$ converging to $1 / 2$ and satisfying $f\left(x_{n}\right)=e^{b x_{n}}$. We will derive a contradiction from this.

Let $I \subset\left(0, \frac{1}{2}\right)$ be an closed interval of positive length (whose endpoints are bounded away from 0 and $\frac{1}{2}$). Let J be I translated right by adding $\frac{1}{2}$. Observe that there is a relationship between the integrals:

$$
\begin{equation*}
\int_{J} f(x) d x=\int_{I} f\left(x+\frac{1}{2}\right)=\int_{I} e^{a / 2} f(x) d x=e^{a / 2} \int_{I} f(x) d x \tag{1}
\end{equation*}
$$

Similarly, we can let J_{n} denote the translation of I by x_{n}. Since x_{n} tends to $\frac{1}{2}$, for sufficiently large n, $J_{n} \subset[0,1]$, so f is integrable on J_{n}. For similar reasons, we have

$$
\int_{J_{n}} f(x) d x=\int_{I} f\left(x+x_{n}\right) d x=e^{b x_{n}} \int_{I} f(x) d x .
$$

Observe that as $n \rightarrow \infty$, we have $J_{n} \rightarrow J$, in the sense that the endpoints converge. Then by continuity of the integral (anti-derivative) we have

$$
\int_{J} f(x) d x=\lim _{n \rightarrow \infty} \int_{J_{n}} f(x) d x=\lim _{n \rightarrow \infty} e^{b x_{n}} \int_{I} f(x) d x=e^{b / 2} \int_{I} f(x) d x .
$$

Since $f>0$, we know $\int_{I} f>0$. Thus the equation above and equation 1 together imply that $a=b$, which is a contradiction.

Remark: We are using the fact that if f is an integrable function on an interval containing 0 , then the anti-derivative

$$
g(t)=\int_{0}^{t} f(x) d x
$$

is continuous. This implies continuity of integrals over intervals, since for $\left[a_{n}, b_{n}\right] \rightarrow[a, b]$, we have

$$
\int_{[a, b]} f=g(b)-g(a)=\lim _{n \rightarrow \infty} g\left(b_{n}\right)-g\left(a_{n}\right)=\lim _{n \rightarrow \infty} \int_{\left[a_{n}, b_{n}\right]} f .
$$

Further source of help: There is a document discussing this problem here:
http://math.mit.edu/~stevenj/exponential.pdf

Page 6

