
Math 70100: Functions of a Real Variable I
Homework 12, due Wednesday, December 10th.

We let L1 denote the collection space of integrable functions from R→ R.

1. (Folland §2.3 # 20) (A generalized Dominated Convergence Theorem) Let f, g ∈ L1 and let
{fn} and {gn} be sequences in L1. Show that if |fn| ≤ gn, fn → f and gn → g pointwise a.e.,
and limn→∞

∫
gn =

∫
g, then

∫
f = limn→∞

∫
fn. (Hint: Rework the proof of the dominated

convergence theorem, either in class or following Folland. Remark: The condition that
∫
gn →∫

g is necessary as the example gn = 1
n
χ[1,n] illustrates.)

Solution: Since −gn ≤ fn ≤ gn, we observe that gn + fn ≥ 0 and gn − fn ≥ 0. The
sequence of functions in N given by

hN = inf
n≥N

gn + fn

is therefore non-negative and increases pointwise to g + f almost everywhere. Observe
that hN is measurable and dominated by the integrable function g + f . Therefore, hN is
integrable. Then by the monotone convergence theorem,∫

(g + f) = lim
N→∞

∫
inf
n≥N

(gn + fn).

Similar remarks about the sequence gn − fn indicate that∫
(g − f) = lim

N→∞

∫
inf
n≥N

(gn − fn).

Observe that we have

inf
n≥N

(gn + fn) ≤ gN + fN and inf
n≥N

(gn − fn) ≤ gN − fN .

It follows that
−gN + inf

n≥N
(gn + fn) ≤ fN ≤ gN − inf

n≥N
(gn − fn).

Integrating everything yields:

−
∫
gN +

∫
inf
n≥N

(gn + fn) ≤
∫
fN ≤

∫
gN −

∫
inf
n≥N

(gn − fn).

Observe that the limit of the left hands side is

lim
N→∞

[
−
∫
gN +

∫
inf
n≥N

(gn + fn)

]
= −

∫
g +

∫
(g + f) =

∫
f.

Similarly, the limit of the right hand side is

lim
N→∞

[∫
gN −

∫
inf
n≥N

(gn − fn)

]
=

∫
g −

∫
(g − f) =

∫
f.

So, by the squeeze theorem, we see limN→∞ fN =
∫
f .



2. (Folland §2.3 # 21) Suppose {fn ∈ L1} is a sequence of functions converging to f ∈ L1 pointwise
a.e., then

∫
|fn − f | → 0 if and only if

∫
|fn| →

∫
|f |. (Hint: Use the prior exercise. Remark:

All the functions need to be integrable here.)

Solution: First suppose that limn→∞
∫
|fn−f | → 0. Observe that −|fn−f | ≤ |fn|−|f | ≤

|fn − f | pointwise. So, for every n,

−
∫
|fn − f | ≤

∫
|fn| − |f | ≤

∫
|fn − f |.

By hypothesis, the left and right sides tend to zero as n → ∞, so by the squeeze theorem
limn→∞

∫
|fn| − |f | = 0. This is equivalent to saying

∫
|fn| →

∫
|f |.

Now suppose that
∫
|fn| →

∫
|f |. Set φn = |fn − f | and ψn = |fn| + |f |. Clearly φn ≤ ψn

everywhere. By our hypothesis that fn → f pointwise a.e., we know that φn → 0 and
ψn → 2|f | pointwise a.e.. Also, because

∫
|fn| →

∫
|f |, we know that

∫
ψn →

∫
2|f |. We

conclude from the prior part that
∫
φn →

∫
0 = 0, or equivalently, limn→∞

∫
|fn − f | = 0.

3. (Folland §2.3 # 19b) Find a sequence of integrable functions fn : R → [0,∞) so that {fn}
converges uniformly to f : R→ [0,∞) but f is not integrable.

Solution: Let fn(x) = 1
x
χ[1,n](x), which is integrable because it is discontinuous at only

two points, is bounded, and compactly supported. Let f = 1
x
χ[1,∞)(x). Then

f − fn =
1

x
χ(n,∞),

which is bounded in absolute value by 1
n

which tends to zero. Thus fn → f uniformly.
Furthermore, ∫

fn =

∫ n

1

1

x
dx = lnn.

Since fn ≤ f for all n, we see that
∫
f ≥ lnn for all n. Thus

∫
f = +∞, and f is not

integrable.

4. (Folland §2.3 # 26) Show that if f ∈ L1 and F (x) =
∫ x
−∞ f(x) dλ(x), then F : R → R is

continuous.

Solution: First we will show it for the case where f : R→ [0,∞) is integrable. For a < b
define the strip

Sa,b = {(x, y) : a ≤ x < b}.

Observe that if a < b, then

F (b)− F (a) = λ2
(
Uf ∩ Sa,b).
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Fix a, and observe that ⋂
b>a

(Uf ∩ Sa,b) = Uf ∩ {(x, y) : x = a}.

So by measure continuity, we have

lim
b→a+

F (b)− F (a) = λ2
(
Uf ∩ {(x, y) : x = a}

)
= 0.

Similarly, fixing b, we see ⋂
a<b

(Uf ∩ Sa,b) = ∅

and so by measure continuity

lim
a→b−

F (b)− F (a) = λ2(∅) = 0.

By combining these statements, we conclude that limy→x F (y) = F (x).

Now consider the statement for f : R → R integrable. Consider the positive and negative
parts f+ and f−, and recall that both are positive functions, f = f+ − f− and

∫
f =∫

f+ −
∫
f−. Then, by applying the observations above,

lim
y→x

F (y) = lim
y→x

∫ y

−∞
f+ −

∫ y

−∞
f− =

∫ x

−∞
f+ −

∫ x

−∞
f− = F (x).

5. (Pugh Chapter 6 # 60a) Let E ⊂ R be a measurable set having positive Lebesgue measure.
Prove Steinhaus’ Theorem: E meets its t-translates for all sufficiently small t ∈ R. (Hint:
density points.)

Solution: Let p be a density point for E. Then we can choose a ball B = (p− r, p+ r) of
radius r centered at p so that

λ(B ∩ E) >
2

3
λ(B) =

4r

3
.

Now suppose t ∈ R and 0 ≤ t < r
3
. Let C = BrE. It then follows that λ(C) ≤ 2r

3
. We will

show that E ∩ (E + t) 6= ∅ by showing that (E ∩B)∩
(
(E ∩B) + t)

)
6= ∅. Here +t denotes

translation by t. Observe that both sets A = E ∩ B and B = (E ∩ B) + t are contained in
the interval I = (p− r, p+ r + t), and the measure of their compliments is

λ(I r A) = λ(I rB) = λ(C) + t < r.

It follows that λ
(
I r (A ∪B)

)
< 2r. Therefore,

λ(A ∩B) = λ(I)− λ
(
I r (A ∪B)

)
> (2r + t)− 2r = t ≥ 0.

Since λ(A ∩B) measure is positive, A ∩B 6= ∅ and hence E ∩ (E + t) 6= ∅.
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We proved the result for small non-negative t. By reflecting E in the origin, we see that it
also holds for small non-positive t.

6. (Zakeri’s Homework 11 # 4) Let f ∈ L1, and let E be a Lebesgue measurable set of positive
measure. The average value of f on E is

A(f ;E) =
1

λ(E)

∫
E

f.

Prove that if A(f ;E) ∈ [a, b] for every such E, then f(x) ∈ [a, b] for almost every x.

Solution: Consider the set

A = {x ∈ R : f(x) 6∈ [a, b]},

which is measurable because f ∈ L1. We prove the contrapositive. We will show that if
λ(A) > 0, then there is a set E of positive measure so that A(f ;E) 6∈ [a, b].

Observe that A is naturally the union of two disjoint measurable sets, A = A+ t A− with

A+ = {x ∈ R : f(x) > b} and A− = {x ∈ R : f(x) < a}.

Observe that λ(A+) + λ(A−) = λ(A) > 0.

Assume that λ(A+) > 0. (It could be that λ(A+) = ∞.) Observe that A+ =
⋃
n

(
A+ ∩

[−n, n]
)
. Measure continuity then tells us that λ(A+) = limn→∞ λ

(
A+ ∩ [−n, n]

)
. Then

there is some n so that the set E = A+ ∩ [−n, n] satisfies 0 < λ(E) < ∞. We claim that
this choice works. We will use the fact that when the integral of a non-negative function is
zero, the function must be zero almost everywhere. Since f − b is a positive function on E,
it must have positive integral. Therefore∫

E

(f − b) > 0 and thus

∫
E

f > bλ(E).

We have shown that A(f ;E) = 1
λ(E)

∫
E
f > b.

The same argument works for the case when λ(A−) > 0.

7. (Spring 2013 Qual) Suppose f : R→ R is integrable on [0, 1], and satisfies f(x+ y) = f(x)f(y)
for all x, y ∈ R with f(0) = 1. Prove that f(x) = eax for some constant a ∈ R.

Solution: First observe that f never non-positive values. It can’t take the value zero
because if f(x) = 0 then

1 = f(x− x) = f(x)f(−x) = 0,

which is a contradiction. Similarly, f cannot take negative values because f(x) = f(x
2
)2 ≥ 0.
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The other important observation is that for every p
q
∈ Q and each x ∈ R, we have

f(
p

q
x) = f(x)

p
q .

This further implies that if f(x) = eax then f(p
q
x) = ea(p/qx) for all rationals p

q
, which

will be what we use in the proof. To see this, first observe it holds for natural numbers
n: f(nx) = f(x)n. For positive rationals p

q
, observe that the above implies f(px) = f(x)p

and f(px)q = f(px
q

). By combining these expressions, we get the above result for positive

rationals. The equation also clearly holds when p
q

= 0 since f(0) = 1. We can extend to the

negative rationals by observing that f(x)f(−x) = 1.

Since f(1/2) is positive, there is a unique real number so that f(1/2) = ea/2. Now suppose
that there is an x0 so that f(x0) 6= eax0 . We have f(x0) = ebx0 for some b 6= a. We will
derive a contradiction to this. By considering rational multiples of x0, we obtain as sequence
of real numbers {xn = pnx0

qn
} converging to 1/2 and satisfying f(xn) = ebxn . We will derive

a contradiction from this.

Let I ⊂ (0, 1
2
) be an closed interval of positive length (whose endpoints are bounded away

from 0 and 1
2
). Let J be I translated right by adding 1

2
. Observe that there is a relationship

between the integrals:∫
J

f(x) dx =

∫
I

f(x+
1

2
) =

∫
I

ea/2f(x) dx = ea/2
∫
I

f(x) dx. (1)

Similarly, we can let Jn denote the translation of I by xn. Since xn tends to 1
2
, for sufficiently

large n, Jn ⊂ [0, 1], so f is integrable on Jn. For similar reasons, we have∫
Jn

f(x) dx =

∫
I

f(x+ xn) dx = ebxn
∫
I

f(x) dx.

Observe that as n→∞, we have Jn → J , in the sense that the endpoints converge. Then
by continuity of the integral (anti-derivative) we have∫

J

f(x) dx = lim
n→∞

∫
Jn

f(x) dx = lim
n→∞

ebxn
∫
I

f(x) dx = eb/2
∫
I

f(x) dx.

Since f > 0, we know
∫
I
f > 0. Thus the equation above and equation 1 together imply

that a = b, which is a contradiction.

Remark: We are using the fact that if f is an integrable function on an interval containing
0, then the anti-derivative

g(t) =

∫ t

0

f(x) dx

is continuous. This implies continuity of integrals over intervals, since for [an, bn] → [a, b],
we have ∫

[a,b]

f = g(b)− g(a) = lim
n→∞

g(bn)− g(an) = lim
n→∞

∫
[an,bn]

f.

Further source of help: There is a document discussing this problem here:
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http://math.mit.edu/~stevenj/exponential.pdf
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