Math 70100: Functions of a Real Variable I Homework 12, due Wednesday, December 10th.

We let L^1 denote the collection space of integrable functions from $\mathbb{R} \to \mathbb{R}$.

- 1. (Folland §2.3 # 20) (A generalized Dominated Convergence Theorem) Let $f, g \in L^1$ and let $\{f_n\}$ and $\{g_n\}$ be sequences in L^1 . Show that if $|f_n| \leq g_n$, $f_n \to f$ and $g_n \to g$ pointwise a.e., and $\lim_{n\to\infty} \int g_n = \int g$, then $\int f = \lim_{n\to\infty} \int f_n$. (*Hint:* Rework the proof of the dominated convergence theorem, either in class or following Folland. Remark: The condition that $\int g_n \to \int g$ is necessary as the example $g_n = \frac{1}{n}\chi_{[1,n]}$ illustrates.)
- 2. (Folland §2.3 # 21) Suppose $\{f_n \in L^1\}$ is a sequence of functions converging to $f \in L^1$ pointwise a.e., then $\int |f_n f| \to 0$ if and only if $\int |f_n| \to \int |f|$. (Hint: Use the prior exercise. Remark: All the functions need to be integrable here.)
- 3. (Folland §2.3 # 19b) Find a sequence of integrable functions $f_n : \mathbb{R} \to [0, \infty)$ so that $\{f_n\}$ converges uniformly to $f : \mathbb{R} \to [0, \infty)$ but f is not integrable.
- 4. (Folland §2.3 # 26) Show that if $f \in L^1$ and $F(x) = \int_{-\infty}^x f(t) d\lambda(t)$, then $F : \mathbb{R} \to \mathbb{R}$ is continuous.
- 5. (Pugh Chapter 6 # 60a) Let $E \subset \mathbb{R}$ be a measurable set having positive Lebesgue measure. Prove Steinhaus' Theorem: E meets its t-translates for all sufficiently small $t \in \mathbb{R}$. (Hint: density points.)
- 6. (Zakeri's Homework 11 # 4) Let $f \in L^1$, and let E be a Lebesgue measurable set of positive measure. The average value of f on E is

$$A(f; E) = \frac{1}{\lambda(E)} \int_E f.$$

Prove that if $A(f; E) \in [a, b]$ for every such E, then $f(x) \in [a, b]$ for almost every x.

7. (Spring 2013 Qual) Suppose $f : \mathbb{R} \to \mathbb{R}$ is integrable on [0, 1], and satisfies f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$ with f(0) = 1. Prove that $f(x) = e^{ax}$ for some constant $a \in \mathbb{R}$.