Math 70100: Functions of a Real Variable I
Homework 11, due Wednesday, November 26th.

1. (Modified from Pugh, Chapter 6 # 28) A non-negative linear combination of measurable char-
acteristic functions is a simple function (or step function). That is, a simple function has the

form
n

¢(z) =Y cixm(x)
i=1
where Ei,..., E, are measurable sets and ¢y, ..., ¢, are non-negative constants. (The charac-
teristic function of E C R is the function yg : R — {0,1} so that yg(z) = 1 if and only if
x € E.) We say that Y ¢;xg, expresses ¢. If the E; are disjoint and non-empty and the ¢; are
distinct and positive, then the expression for ¢ is called canonical.

(a) Show that a canonical expression for a simple function exists and is unique. (Remark: It
might be useful to review part (b) to see if you want to prove more here.)

Solution: Let ¢(z) = Y, cixr,(x) be a simple function. Observe that ¢ takes no
more than 2" values: the value ¢(z) is determined by the set of i so that z € E;. Let
Y denote the finite set of values taken by ¢. Then observe that

¢ =) YXo-1(u)

yey
This is a canonical expression for ¢.

To see it is unique, suppose » et djxr; is a canonical expression for some functions
1. We will show that if the set of pairs P, = {(F},d;)} is distinct from the set of
pairs Py = {(¢7'(y),y) : y € Y} then ¢ # 1. First suppose there is a j so that
(Fj,d;) € Py. If dj ¢ Y, then as Fj is non-empty, there is an z € Fj and ¢(z) € YV
is different than ¢ (z) = d;. Now suppose d; = y for some y € Y but F; # ¢ '(y).
Then there is an z € F; \ ¢ '(y) or an x € ¢ '(y) \ F;. In either case, we see that
¢(x) # ¥(x). This proves that P, ¢ P, implies ¢ # ¢. The same argument shows
that if Py ¢ P, implies ¢ # 1.

(b) If ¢ is a simple function with canonical representation » . , ¢;xg;, define the “integral”
1(¢) = >_;ciA(E;). Show that if > 7| djxr, is a (not-necessarily canonical) expression of

¢, then
I(¢) = Y d;\(F).
j=1
Solution: Let J = {1,...,m} which indexes the non-canonical expression for ¢. Let
A C J and define F4 = ﬂjeA F;. The sets F)4 are indexed by the power set of J, are
disjoint and measurable and cover the set of non-zero values of ¢. Observe that for
T € Fy,
() = Zdj =¢; for some i.
jEA




Define ¢4 = ¢;, where ¢; is determined as above. The fact that our non-canonical
expression yields ¢ on F; tells us that

E; = |_| Fy.

A :ca=c;

Therefore, it follows that

ME)= > AMFa).

L ca=c;

Every A with ¢4 # 0 is thus accounted for by some i. Since ¢; = ¢4 when Fy C Ej;,
plugging this into our expression for the integral yields

I(¢) =D cME) =Y caX(Fa).
i AcJ
Because our expressions for ¢ coincide on Fs, we see that c4 = ZjeA d;. So, we have

16) = 30 S dA(Fy).

ACJ jEA

This is a finite sum, so we can rearrange it as:

I<¢>:Z<dj > A(FA>>-

jed ACJ : jEA

Now since each F} is a disjoint union of the Fy where j € A, we see by finite additivity
of measure,

1(9) = ) d;A(F)),

jed

which is the expression sought.

(c) Infer from (b) that the map I from simple functions to R given by ¢ +— I(¢) is linear.

Solution: Suppose a € R and ¢ = ), ¢;xg,. Observe that a¢ also a simple function
and has expression
6= Y acs,

Thus,
I(ag) = Z ac;\(E;) = a Z cMNE;) = al(¢).

Now suppose ¢ = >, cixg, and ¢ = . djxF,. Then,

Z CiXE; + Z diXF,
( J
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is an expression of ¢ + 1». We conclude that the sum satisfies:

16+9) = 2 aME) + 3 d\E) = 16) + 1)

(d) Given a measurable function f : R — [0,00), show there exists a pointwise increasing
sequence of simple functions {¢,} whose pointwise limit is f.

Solution: For a natural number n, let

Y":{2£” : pe Nand 2% € [0,n].}.

Then define

ZyX [yy+2n )

YyEYy

To see that ¢, is increasing observe that Y,, C Y,,;. The value of ¢, at = is the
greatest value less than or equal to f(x). Thus, Y, C Y, implies ¢, () < ¢p11(x).
Also observe that if f(z) < n, then

7(2) ~ 6ul@)] < 5

This eventually holds for any z, so ¢,, — f pointwise.

(e) Show that for any two such sequences {¢,} and {,} increasing to f as in part (d),
lim I(¢,) = lim I(¢,).
n—oo n—oo

Therefore, the definition of I(f) as this limit is well-defined.

Solution: First observe that the integrals I(¢,) and I(1,) are increasing. (It can be
proven that I(¢,) < I(¢,+1) by choosing an expression for both functions using the
same collection of sets E; and comparing the formula for the integral termwise.) In
particular

li_>m I(¢,) =supI(¢,) and li_>rn I(¢y) = sup I(¢y,).

This suggests a path to a proof. We will show that for any n and any real number
a < I(¢y), there is an m so that I(¢,,) > a. This directly implies that sup,, I(¢,) >
sup,, I(¢,). Our argument will be independent of the choice of sequences {¢,} and
{¥n} so the same argument will yield sup,, 1(1,,) < sup,, I(¢,), so we get equality.

We will be proving that for any n and any o < I(¢,,), there is an m so that I(¢y,) > «.
From prior work, we can assume ¢, is given by a canonical expression, say

(bn = Z CiXE;-
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For each N € N, observe that x[_n n¢, is also a step function. Indeed,

X[-N,N|Pn = Z CiXE;n[-N,N]-

i

The sets E;N[—N, N] increase to E;, so by measure continuity, I (x—n,n®n) = 1(¢n). In
particular, we can choose an N so that I(x-n,nj¢n) > a. For notational convenience,
define ¢, = x|_n,nPn and E] = E; N [N, N].

Now we have a < I(¢))) < oo. Let M < oo denote the maximum value taken by ¢! .
We can choose an € > 0 so that

a < I(¢) — (2N + M)e.

Now consider the increasing sequence ,,, which converges pointwise to a function f
which is pointwise larger than v/,. Then for any x there is an m so that

Um(x) > ¢, (z) — €.
Then for any m, we can consider the bad points
Bu={z : tn(r) < ¢l(z) - }.

Our prior remark tells us that (B, = (. Observe B,, C [=N, N] since ¢/ (z) = 0
outside [—N, N], while each ¢,, is non-negative. Thus, B,, have finite measure and so
measure continuity tells us that A(B,,) — 0. Therefore, we can choose m so large that
A(Bp,) < €. We claim that 1), works. In summary, by construction we have

Y (x) >0 for € B, and ¢,,(x) > max{0, ¢} (x) — €} for z € [-N, N] \ B,,.
In other words, we have the following pointwise inequality:
wm > ¢;1 — €EX[-N,N]~Bm — ¢;1XBm-

Let & denote the expression at right. We have I(1,,) > I(£). Now observe the following
inequalities involving the terms of ¢:

I(X|-N.N}Bn) < I(x]— N, N]) =2N.

I(¢nxB,,) < I(Mxsg,,) = MA(By,) < Me.

Therefore, by linearity and the definition of €, we have
1(§) = (&) —el (X(-v.N1~B) — L (S XB,) = 1(¢,)—€(2N)=Me = I(¢],)—(2N+M)e > a.

Then, I(vy,) > I1(£) > « as required.

(f) Show that the function I from the space of measurable functions R — [0,00) to R given
by f + I(f) is linear.
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Solution: Let a and b be positive real numbers and f, g : R — [0, 00) be measurable.
Let {¢,} and {1,} be increasing sequences of step functions whose pointwise limits
are f and g. Then {a¢, + b, } is an increasing sequence of step functions converging
to af + bg. It then follows by definition that

I(af 4+ bg) = ILm I(ap, + biby,).
Then by linearity of I action on the space of step functions, we have

I(af 4+ bg) = nli_{](f)l()&[((bn) + bl () = aT}LrgOI(¢n) + bnli_)rgol(wn) =al(f)+bl(g).

2. (Pugh, Chapter 6 # 30) Find a sequence of measurable functions f, : [0,1] — [0, 1] such that
J fn — 0 asn — oo, but for no x € [0,1] does f,(x) converge to a limit as n — co.

Solution: Suppose {a,} is a sequence of real numbers with 0 < a,, < 1 for all n so that

a, — 0 and so that the partial sums by = 22;1 a, tend to infinity. (For example a,, = +.)

Define '

1 if there i Z so that z € [b,. b,
fn(x):{ if there is an m € Z so that = € | +1)

0 otherwise.

Observe that
/fn - bn+1 - bn = Unp,

which tends to zero as n — oo by hypothesis. Now fix . We will show that f,(z) does not
tend to zero by showing f,(z) = 1 infinitely often. To see this observe that

[0,00) = JIbn, but1).

n

So, for each integer m > 0, there is an n = n(m) so that x + m € [b,,b,41). Since each
interval [b,, b,11) has length a, < 1, the mapping m — n(m) is injective. The image of this
map provides the infinitely many n for which f,(z) = 1.

3. Let {f, : n € N} be a sequence of measurable functions R — [0,00). Define g = inf,>x fn,
ie.,
gr(z) =1inf {f.(x) : n>k}.
Define h = liminf f,, i.e.,
n—o0

h(w) = lim gy (x).

(a) Show that gj is measurable for all k¥ € N. Explain why [ g, < [ f, when n > k.

Solution: To show g, is measurable, it suffices to show that gk’l((—oo, y)) is mea-
surable for all y € R. Observe g; ' ((—00,y)) = g; ' ([0,y)) since g, is non-negative.
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Since gy = inf,>x f,, we see that gip(z) € [0,y) if and only if there is an n > k so that
fn(x) €[0,y). Therefore,

gk_l([ovy)) = U frjl([oay))

n>k
This is a countable union of measurable sets and therefore measurable.

To see that [ gy < [ f, for n > k, observe that g, < f, pointwise.

(b) Prove Fatou’s lemma. (Sometimes called Fatou’s theorem). Prove that h is measurable
and fh < liminfnﬁooffn. (Hint: Use the monotone convergence theorem. Remark:

Sometimes Fatou’s lemma is used to prove the monotone convergence theorem, though we
did not do this.)

Solution: Observe that g; = inf, > f,, is increasing as k increases, since gy is an
infimum over a smaller set of functions. The monotone convergence theorem then
directly implies that h = limy_,~, g is measurable and that

[r=pm [ a

To finish the proof, recall from the previous part that [ g, < [ fi for all k. Thus,

/h = liminf [ g < liminf/fk.
k—o00 k—o00

4. (Pugh, Chapter 6 # 55) A sequence of measurable functions f, : [a,b] — R converges to
measurable f : [a,b] — R nearly uniformly if for every €, there is a measurable set S C [a, ]
with A(S) < € so that f,, — f uniformly on [a,b] \. S. Show that nearly uniform convergence is
transitive in the following sense. Assume f,, converges to f nearly uniformly as n — oo and that
for each n there is a sequence of measurable functions f, ; which converges nearly uniformly
to f, as k — oo. We will show that there is a choice of a map n +— k(n) so that the sequence
Jnk(n) tends to f nearly uniformly as n — oo. (All functions are measurable and defined on

[a,0].)
(a) Show that there is a sequence k(n) — oo such that f, y,) converges nearly uniformly to f
as n — o0o.

Solution: Suppose f, — f nearly uniformly and for all n, f, » — f, nearly uniformly.
We will begin by explaining how to produce the function n +— k(n).

Since f, — fn nearly uniformly, we can choose for each n a set S, with A(S,) < =

2n
and a k = k(n) so that

1
| frkn) — Jnl < on OB the set [a,b] \ S,,.
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Now we prove the following:
Lemma. Suppose f, — f uniformly on a set [a,b] N~ S. Let N € N and let §' =
SUU,~x Sn. Then f, k) — f uniformly on [a,b] N S".

We will prove the lemma by verifying that f, yn») — f uniformly on [a,b] \ ' Fix
some € > 0 for verifying uniform convergence. Since f, — f uniformly on [a,b] \ S,
we can find an M; so that

n > M; implies |f(x)—fn(x)|<§ for x € [a,b] . S.

Observe [a,b] S D [a,b] \ 5, so this also holds here. Now we can choose M so that
5 < & when n > M,. Then by definition of S, and k(n), we see

n > My implies |fp(2) — farm(®)] < % for x € [a,b] \ S,.

Again this also holds for = € [a, b] \ 5" since this is a smaller set. Combining these two
facts, we see for n > max{Mj, My} and x € [a,b] . .S’, by the triangle inequality,

£ (@) = ok (2)] < 1f(2) = fal@)] + [ ful2) = fanm (@)] <

We have verified by definition that f, y»y — f uniformly on [a, b] \ S, which proves
the lemma.

With the lemma we can now show that f, y») — [ nearly uniformly. Fix some e > 0.
Since f,, — f nearly uniformly, there is a set S with A(S) < § so that f,, — f uniformly
on [a,b] . S. We can also choose an N € N so that

S1o
2m 2
n=N
As in the lemma, define the set
=SuJ S
n=N

Observe that we have arranged that A(S”) < e by countable subadditivity. Furthermore,
the lemma tells us that f,, x) — f nearly uniformly on ', which concludes the proof.

(b) Why does (a) remain true when almost everywhere convergence replaces nearly uniform
convergence?

Solution: Suppose f, — f almost everywhere, and f, — f, almost everywhere.
We will find a function n — k(n) so that f, ) — f almost everywhere.

Fix n. Observe that for almost every z, f, x(z) — 0. Then we can consider the set of
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bad points .
Bk = {x € [CL?b] : ’fn,k(x) - fn(x)’ > 2_n}

By definition of convergence almost everywhere, we see that (o Ugs x Br is a subset
of those points which never converge to zero, and hence a zero set. The sequence of
sets s i Br is decreasing as K increases and is contained in [a,b], so we see that
MUpsgx B — 0 as K — 0. Observe A(Bx) < AMU,>x Bk, 50 A(Br) — 0 also. We

conclude that there is a k(n) so that A(Byg,) < 3. In summary, we have

fukl@) = ful@) < g for z € [a, 8]~ Bugo )

and )\(Bk:(n)) < %
Now we may repeat the same concluding argument as before. To see that fy, x(n) — fn
almost everywhere, it suffices to prove that it converges on a set of measure arbitrarily
close to A([a, b]). Fix € > 0. Then we can choose an N so that

Set B' = Uy Bun)- We have A(B') < Y77 5= < e.. Furthermore, by equation ,
we have

lim |f,x(x) — fu(z)] = 0 for x € [a,b] \ B’

n—oo

Now let Z be the zero set of points x so that f,(z) /4 f(z). Then if x € [a,b] \ Z, we
have |f,(x) — f(z)| — 0 as n — oo. We conclude that when = € [a,b] \ (B’ U Z), we
have

1
[fue(@) = f(@)] < [ fap(2) = ful@)l + [ fule) = f@)] < 5 + 1 fule) = f(2)],
and the right hand side tends to zero as n — 0o, so the left side does as well. Observe
that A([a,b] \ (B'UZ)) > b—a — ¢, so we have shown convergence on sets arbitrarily
close to full measure. Taking a countable union of such sets whose measure tends to
full measure yields a set of full measure on which f, — f.
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