
Math 70100: Functions of a Real Variable I
Homework 11, due Wednesday, November 26th.

1. (Modified from Pugh, Chapter 6 # 28) A non-negative linear combination of measurable char-
acteristic functions is a simple function (or step function). That is, a simple function has the
form

φ(x) =
n∑
i=1

ciχEi
(x)

where E1, . . . , En are measurable sets and c1, . . . , cn are non-negative constants. (The charac-
teristic function of E ⊂ R is the function χE : R → {0, 1} so that χE(x) = 1 if and only if
x ∈ E.) We say that

∑
ciχEi

expresses φ. If the Ei are disjoint and non-empty and the ci are
distinct and positive, then the expression for φ is called canonical.

(a) Show that a canonical expression for a simple function exists and is unique. (Remark: It
might be useful to review part (b) to see if you want to prove more here.)

Solution: Let φ(x) =
∑n

i=1 ciχEi
(x) be a simple function. Observe that φ takes no

more than 2n values: the value φ(x) is determined by the set of i so that x ∈ Ei. Let
Y denote the finite set of values taken by φ. Then observe that

φ =
∑
y∈Y

yχφ−1({y}).

This is a canonical expression for φ.

To see it is unique, suppose
∑

j∈J djχFj
is a canonical expression for some functions

ψ. We will show that if the set of pairs Pψ = {(Fj, dj)} is distinct from the set of
pairs Pφ = {(φ−1(y), y) : y ∈ Y } then φ 6= ψ. First suppose there is a j so that
(Fj, dj) 6∈ Pφ. If dj 6∈ Y , then as Fj is non-empty, there is an x ∈ Fj and φ(x) ∈ Y
is different than ψ(x) = dj. Now suppose dj = y for some y ∈ Y but Fj 6= φ−1(y).
Then there is an x ∈ Fj r φ−1(y) or an x ∈ φ−1(y) r Fj. In either case, we see that
φ(x) 6= ψ(x). This proves that Pψ 6⊂ Pφ implies ψ 6= ψ. The same argument shows
that if Pφ 6⊂ Pψ implies φ 6= ψ.

(b) If φ is a simple function with canonical representation
∑n

i=1 ciχEi
, define the “integral”

I(φ) =
∑

i ciλ(Ei). Show that if
∑m

j=1 djχFj
is a (not-necessarily canonical) expression of

φ, then

I(φ) =
n∑
j=1

djλ(Fj).

Solution: Let J = {1, . . . ,m} which indexes the non-canonical expression for φ. Let
A ⊂ J and define FA =

⋂
j∈A Fj. The sets FA are indexed by the power set of J , are

disjoint and measurable and cover the set of non-zero values of φ. Observe that for
x ∈ FA,

φ(x) =
∑
j∈A

dj = ci for some i.



Define cA = ci, where ci is determined as above. The fact that our non-canonical
expression yields φ on Ei tells us that

Ei =
⊔

A : cA=ci

FA.

Therefore, it follows that

λ(Ei) =
∑

A : cA=ci

λ(FA).

Every A with cA 6= 0 is thus accounted for by some i. Since ci = cA when FA ⊂ Ei,
plugging this into our expression for the integral yields

I(φ) =
∑
i

ciλ(Ei) =
∑
A⊂J

cAλ(FA).

Because our expressions for φ coincide on FA, we see that cA =
∑

j∈A dj. So, we have

I(φ) =
∑
A⊂J

∑
j∈A

djλ(FA).

This is a finite sum, so we can rearrange it as:

I(φ) =
∑
j∈J

(
dj

∑
A⊂J : j∈A

λ(FA)

)
.

Now since each Fj is a disjoint union of the FA where j ∈ A, we see by finite additivity
of measure,

I(φ) =
∑
j∈J

djλ(Fj),

which is the expression sought.

(c) Infer from (b) that the map I from simple functions to R given by φ 7→ I(φ) is linear.

Solution: Suppose a ∈ R and φ =
∑

i ciχEi
. Observe that aφ also a simple function

and has expression

aφ =
∑
i

aciχEi
.

Thus,

I(aφ) =
∑
i

aciλ(Ei) = a
∑
i

ciλ(Ei) = aI(φ).

Now suppose φ =
∑

i ciχEi
and ψ =

∑
j djχFj

. Then,∑
i

ciχEi
+
∑
j

djχFj
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is an expression of φ+ ψ. We conclude that the sum satisfies:

I(φ+ ψ) =
∑
i

ciλ(Ei) +
∑
j

djλ(Fj) = I(φ) + I(ψ).

(d) Given a measurable function f : R → [0,∞), show there exists a pointwise increasing
sequence of simple functions {φn} whose pointwise limit is f .

Solution: For a natural number n, let

Yn = { p
2n

: p ∈ N and
p

2n
∈ [0, n].}.

Then define
φn =

∑
y∈Yn

yχ
f−1
(
[y,y+ 1

2n
)
).

To see that φn is increasing observe that Yn ⊂ Yn+1. The value of φn at x is the
greatest value less than or equal to f(x). Thus, Yn ⊂ Yn+1 implies φn(x) ≤ φn+1(x).
Also observe that if f(x) < n, then

|f(x)− φn(x)| < 1

2n
.

This eventually holds for any x, so φn → f pointwise.

(e) Show that for any two such sequences {φn} and {ψn} increasing to f as in part (d),

lim
n→∞

I(φn) = lim
n→∞

I(ψn).

Therefore, the definition of I(f) as this limit is well-defined.

Solution: First observe that the integrals I(φn) and I(ψn) are increasing. (It can be
proven that I(φn) ≤ I(φn+1) by choosing an expression for both functions using the
same collection of sets Ei and comparing the formula for the integral termwise.) In
particular

lim
n→∞

I(φn) = sup
n
I(φn) and lim

n→∞
I(ψn) = sup

n
I(ψn).

This suggests a path to a proof. We will show that for any n and any real number
α < I(φn), there is an m so that I(ψm) ≥ α. This directly implies that supn I(ψn) ≥
supn I(φn). Our argument will be independent of the choice of sequences {φn} and
{ψn} so the same argument will yield supn I(ψn) ≤ supn I(φn), so we get equality.

We will be proving that for any n and any α < I(φn), there is an m so that I(ψm) ≥ α.
From prior work, we can assume φn is given by a canonical expression, say

φn =
∑
i

ciχEi
.
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For each N ∈ N, observe that χ[−N,N ]φn is also a step function. Indeed,

χ[−N,N ]φn =
∑
i

ciχEi∩[−N,N ].

The sets Ei∩[−N,N ] increase to Ei, so by measure continuity, I(χ[−N,N ]φn)→ I(φn). In
particular, we can choose an N so that I(χ[−N,N ]φn) > α. For notational convenience,
define φ′n = χ[−N,N ]φn and E ′i = Ei ∩ [−N,N ].

Now we have α < I(φ′n) < ∞. Let M < ∞ denote the maximum value taken by φ′n.
We can choose an ε > 0 so that

α < I(φ′n)− (2N +M)ε.

Now consider the increasing sequence ψm, which converges pointwise to a function f
which is pointwise larger than ψ′n. Then for any x there is an m so that

ψm(x) > φ′n(x)− ε.

Then for any m, we can consider the bad points

Bm = {x : ψm(x) ≤ φ′n(x)− ε}.

Our prior remark tells us that
⋂
Bm = ∅. Observe Bm ⊂ [−N,N ] since φ′n(x) = 0

outside [−N,N ], while each φm is non-negative. Thus, Bm have finite measure and so
measure continuity tells us that λ(Bm)→ 0. Therefore, we can choose m so large that
λ(Bm) < ε. We claim that ψm works. In summary, by construction we have

ψm(x) ≥ 0 for x ∈ Bm and ψm(x) > max{0, φ′n(x)− ε} for x ∈ [−N,N ] rBm.

In other words, we have the following pointwise inequality:

ψm ≥ φ′n − εχ[−N,N ]rBm − φ′nχBm .

Let ξ denote the expression at right. We have I(ψm) ≥ I(ξ). Now observe the following
inequalities involving the terms of ξ:

I(χ[−N,N ]rBm) ≤ I(χ[ −N,N ]) = 2N.

I(φ′nχBm) ≤ I(MχBm) = Mλ(Bm) < Mε.

Therefore, by linearity and the definition of ε, we have

I(ξ) = I(φ′n)−εI(χ[−N,N ]rBm)−I(φ′nχBm) ≥ I(φ′n)−ε(2N)−Mε = I(φ′n)−(2N+M)ε > α.

Then, I(ψm) > I(ξ) > α as required.

(f) Show that the function I from the space of measurable functions R → [0,∞) to R given
by f 7→ I(f) is linear.
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Solution: Let a and b be positive real numbers and f, g : R→ [0,∞) be measurable.
Let {φn} and {ψn} be increasing sequences of step functions whose pointwise limits
are f and g. Then {aφn + bψn} is an increasing sequence of step functions converging
to af + bg. It then follows by definition that

I(af + bg) = lim
n→∞

I(aφn + bψn).

Then by linearity of I action on the space of step functions, we have

I(af + bg) = lim
n→∞

aI(φn) + bI(ψn) = a lim
n→∞

I(φn) + b lim
n→∞

I(ψn) = aI(f) + bI(g).

2. (Pugh, Chapter 6 # 30) Find a sequence of measurable functions fn : [0, 1] → [0, 1] such that∫
fn → 0 as n→∞, but for no x ∈ [0, 1] does fn(x) converge to a limit as n→∞.

Solution: Suppose {an} is a sequence of real numbers with 0 < an ≤ 1 for all n so that
an → 0 and so that the partial sums bN =

∑N
n=1 an tend to infinity. (For example an = 1

n
.)

Define

fn(x) =

{
1 if there is an m ∈ Z so that x ∈ [bn, bn+1)

0 otherwise.

Observe that ∫
fn = bn+1 − bn = an,

which tends to zero as n→∞ by hypothesis. Now fix x. We will show that fn(x) does not
tend to zero by showing fn(x) = 1 infinitely often. To see this observe that

[0,∞) =
⋃
n

[bn, bn+1).

So, for each integer m ≥ 0, there is an n = n(m) so that x + m ∈ [bn, bn+1). Since each
interval [bn, bn+1) has length an ≤ 1, the mapping m 7→ n(m) is injective. The image of this
map provides the infinitely many n for which fn(x) = 1.

3. Let {fn : n ∈ N} be a sequence of measurable functions R → [0,∞). Define gk = infn≥k fn,
i.e.,

gk(x) = inf {fn(x) : n ≥ k}.
Define h = lim inf

n→∞
fn, i.e.,

h(x) = lim
k→∞

gk(x).

(a) Show that gk is measurable for all k ∈ N. Explain why
∫
gk ≤

∫
fn when n ≥ k.

Solution: To show gk is measurable, it suffices to show that g−1k
(
(−∞, y)

)
is mea-

surable for all y ∈ R. Observe g−1k
(
(−∞, y)

)
= g−1k

(
[0, y)

)
since gk is non-negative.
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Since gk = infn≥k fn, we see that gk(x) ∈ [0, y) if and only if there is an n ≥ k so that
fn(x) ∈ [0, y). Therefore,

g−1k
(
[0, y)

)
=
⋃
n≥k

f−1n
(
[0, y)

)
.

This is a countable union of measurable sets and therefore measurable.

To see that
∫
gk ≤

∫
fn for n ≥ k, observe that gk ≤ fn pointwise.

(b) Prove Fatou’s lemma. (Sometimes called Fatou’s theorem). Prove that h is measurable
and

∫
h ≤ lim infn→∞

∫
fn. (Hint: Use the monotone convergence theorem. Remark:

Sometimes Fatou’s lemma is used to prove the monotone convergence theorem, though we
did not do this.)

Solution: Observe that gk = infn≥k fn is increasing as k increases, since gk+1 is an
infimum over a smaller set of functions. The monotone convergence theorem then
directly implies that h = limk→∞ gk is measurable and that∫

h = lim
k→∞

∫
gk.

To finish the proof, recall from the previous part that
∫
gk ≤

∫
fk for all k. Thus,∫

h = lim inf
k→∞

∫
gk ≤ lim inf

k→∞

∫
fk.

4. (Pugh, Chapter 6 # 55) A sequence of measurable functions fn : [a, b] → R converges to
measurable f : [a, b] → R nearly uniformly if for every ε, there is a measurable set S ⊂ [a, b]
with λ(S) < ε so that fn → f uniformly on [a, b]r S. Show that nearly uniform convergence is
transitive in the following sense. Assume fn converges to f nearly uniformly as n→∞ and that
for each n there is a sequence of measurable functions fn,k which converges nearly uniformly
to fn as k → ∞. We will show that there is a choice of a map n 7→ k(n) so that the sequence
fn,k(n) tends to f nearly uniformly as n → ∞. (All functions are measurable and defined on
[a, b].)

(a) Show that there is a sequence k(n)→∞ such that fn,k(n) converges nearly uniformly to f
as n→∞.

Solution: Suppose fn → f nearly uniformly and for all n, fn,k → fn nearly uniformly.
We will begin by explaining how to produce the function n 7→ k(n).

Since fn,k → fn nearly uniformly, we can choose for each n a set Sn with λ(Sn) < 1
2n

and a k = k(n) so that

|fn,k(n) − fn| <
1

2n
on the set [a, b] r Sn.
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Now we prove the following:
Lemma. Suppose fn → f uniformly on a set [a, b] r S. Let N ∈ N and let S ′ =
S ∪

⋃∞
n=N Sn. Then fn,k(n) → f uniformly on [a, b] r S ′.

We will prove the lemma by verifying that fn,k(n) → f uniformly on [a, b] r S ′. Fix
some ε > 0 for verifying uniform convergence. Since fn → f uniformly on [a, b] r S,
we can find an M1 so that

n > M1 implies |f(x)− fn(x)| < ε

2
for x ∈ [a, b] r S.

Observe [a, b] r S ⊃ [a, b] r S ′, so this also holds here. Now we can choose M2 so that
1
2n
< ε

2
when n > M2. Then by definition of Sn and k(n), we see

n > M2 implies |fn(x)− fn,k(n)(x)| < ε

2
for x ∈ [a, b] r Sn.

Again this also holds for x ∈ [a, b]rS ′ since this is a smaller set. Combining these two
facts, we see for n > max{M1,M2} and x ∈ [a, b] r S ′, by the triangle inequality,

|f(x)− fn,k(n)(x)| ≤ |f(x)− fn(x)|+ |fn(x)− fn,k(n)(x)| ≤ ε

2
+
ε

2
= ε.

We have verified by definition that fn,k(n) → f uniformly on [a, b] r S ′, which proves
the lemma.

With the lemma we can now show that fn,k(n) → f nearly uniformly. Fix some ε > 0.
Since fn → f nearly uniformly, there is a set S with λ(S) < ε

2
so that fn → f uniformly

on [a, b] r S. We can also choose an N ∈ N so that

∞∑
n=N

1

2n
<
ε

2
.

As in the lemma, define the set

S ′ = S ∪
∞⋃
n=N

Sn.

Observe that we have arranged that λ(S ′) < ε by countable subadditivity. Furthermore,
the lemma tells us that fn,k(n) → f nearly uniformly on S ′, which concludes the proof.

(b) Why does (a) remain true when almost everywhere convergence replaces nearly uniform
convergence?

Solution: Suppose fn → f almost everywhere, and fn,k → fn almost everywhere.
We will find a function n 7→ k(n) so that fn,k(n) → f almost everywhere.

Fix n. Observe that for almost every x, fn,k(x)→ 0. Then we can consider the set of
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bad points

Bk = {x ∈ [a, b] : |fn,k(x)− fn(x)| ≥ 1

2n
}.

By definition of convergence almost everywhere, we see that
⋂
K∈N

⋃
k≥K Bk is a subset

of those points which never converge to zero, and hence a zero set. The sequence of
sets

⋃
k≥K Bk is decreasing as K increases and is contained in [a, b], so we see that

λ(
⋃
k≥K Bk → 0 as K → 0. Observe λ(BK) < λ(

⋃
k≥K Bk, so λ(BK) → 0 also. We

conclude that there is a k(n) so that λ(Bk(n)) ≤ 1
2n

. In summary, we have

|fn,k(x)− fn(x)| < 1

2n
for x ∈ [a, b] rBk(n) (1)

and λ(Bk(n)) <
1
2n

.

Now we may repeat the same concluding argument as before. To see that fn,k(n) → fn
almost everywhere, it suffices to prove that it converges on a set of measure arbitrarily
close to λ([a, b]). Fix ε > 0. Then we can choose an N so that

∞∑
n=N

1

2n
< ε.

Set B′ =
⋃∞
n=N Bk(n). We have λ(B′) <

∑∞
n=N

1
2n
< ε.. Furthermore, by equation 1,

we have
lim
n→∞

|fn,k(x)− fn(x)| → 0 for x ∈ [a, b] rB′.

Now let Z be the zero set of points x so that fn(x) 6→ f(x). Then if x ∈ [a, b] r Z, we
have |fn(x) − f(x)| → 0 as n → ∞. We conclude that when x ∈ [a, b] r (B′ ∪ Z), we
have

|fn,k(x)− f(x)| ≤ |fn,k(x)− fn(x)|+ |fn(x)− f(x)| < 1

2n
+ |fn(x)− f(x)|,

and the right hand side tends to zero as n→∞, so the left side does as well. Observe
that λ

(
[a, b] r (B′ ∪ Z)

)
≥ b− a− ε, so we have shown convergence on sets arbitrarily

close to full measure. Taking a countable union of such sets whose measure tends to
full measure yields a set of full measure on which fn → f .
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