Math 70100: Functions of a Real Variable I Homework 11, due Wednesday, November 26th.

1. (Modified from Pugh, Chapter 6 \# 28) A non-negative linear combination of measurable characteristic functions is a simple function (or step function). That is, a simple function has the form

$$
\phi(x)=\sum_{i=1}^{n} c_{i} \chi_{E_{i}}(x)
$$

where E_{1}, \ldots, E_{n} are measurable sets and c_{1}, \ldots, c_{n} are non-negative constants. (The characteristic function of $E \subset \mathbb{R}$ is the function $\chi_{E}: \mathbb{R} \rightarrow\{0,1\}$ so that $\chi_{E}(x)=1$ if and only if $x \in E$.) We say that $\sum c_{i} \chi_{E_{i}}$ expresses ϕ. If the E_{i} are disjoint and non-empty and the c_{i} are distinct and positive, then the expression for ϕ is called canonical.
(a) Show that a canonical expression for a simple function exists and is unique. (Remark: It might be useful to review part (b) to see if you want to prove more here.)

Solution: Let $\phi(x)=\sum_{i=1}^{n} c_{i} \chi_{E_{i}}(x)$ be a simple function. Observe that ϕ takes no more than 2^{n} values: the value $\phi(x)$ is determined by the set of i so that $x \in E_{i}$. Let Y denote the finite set of values taken by ϕ. Then observe that

$$
\phi=\sum_{y \in Y} y \chi_{\phi^{-1}(\{y\})} .
$$

This is a canonical expression for ϕ.
To see it is unique, suppose $\sum_{j \in J} d_{j} \chi_{F_{j}}$ is a canonical expression for some functions ψ. We will show that if the set of pairs $P_{\psi}=\left\{\left(F_{j}, d_{j}\right)\right\}$ is distinct from the set of pairs $P_{\phi}=\left\{\left(\phi^{-1}(y), y\right): y \in Y\right\}$ then $\phi \neq \psi$. First suppose there is a j so that $\left(F_{j}, d_{j}\right) \notin P_{\phi}$. If $d_{j} \notin Y$, then as F_{j} is non-empty, there is an $x \in F_{j}$ and $\phi(x) \in Y$ is different than $\psi(x)=d_{j}$. Now suppose $d_{j}=y$ for some $y \in Y$ but $F_{j} \neq \phi^{-1}(y)$. Then there is an $x \in F_{j} \backslash \phi^{-1}(y)$ or an $x \in \phi^{-1}(y) \backslash F_{j}$. In either case, we see that $\phi(x) \neq \psi(x)$. This proves that $P_{\psi} \not \subset P_{\phi}$ implies $\psi \neq \psi$. The same argument shows that if $P_{\phi} \not \subset P_{\psi}$ implies $\phi \neq \psi$.
(b) If ϕ is a simple function with canonical representation $\sum_{i=1}^{n} c_{i} \chi_{E_{i}}$, define the "integral" $I(\phi)=\sum_{i} c_{i} \lambda\left(E_{i}\right)$. Show that if $\sum_{j=1}^{m} d_{j} \chi_{F_{j}}$ is a (not-necessarily canonical) expression of ϕ, then

$$
I(\phi)=\sum_{j=1}^{n} d_{j} \lambda\left(F_{j}\right)
$$

Solution: Let $J=\{1, \ldots, m\}$ which indexes the non-canonical expression for ϕ. Let $A \subset J$ and define $F_{A}=\bigcap_{j \in A} F_{j}$. The sets F_{A} are indexed by the power set of J, are disjoint and measurable and cover the set of non-zero values of ϕ. Observe that for $x \in F_{A}$,

$$
\phi(x)=\sum_{j \in A} d_{j}=c_{i} \quad \text { for some } i .
$$

Define $c_{A}=c_{i}$, where c_{i} is determined as above. The fact that our non-canonical expression yields ϕ on E_{i} tells us that

$$
E_{i}=\bigsqcup_{A: c_{A}=c_{i}} F_{A} .
$$

Therefore, it follows that

$$
\lambda\left(E_{i}\right)=\sum_{A: c_{A}=c_{i}} \lambda\left(F_{A}\right)
$$

Every A with $c_{A} \neq 0$ is thus accounted for by some i. Since $c_{i}=c_{A}$ when $F_{A} \subset E_{i}$, plugging this into our expression for the integral yields

$$
I(\phi)=\sum_{i} c_{i} \lambda\left(E_{i}\right)=\sum_{A \subset J} c_{A} \lambda\left(F_{A}\right) .
$$

Because our expressions for ϕ coincide on F_{A}, we see that $c_{A}=\sum_{j \in A} d_{j}$. So, we have

$$
I(\phi)=\sum_{A \subset J} \sum_{j \in A} d_{j} \lambda\left(F_{A}\right) .
$$

This is a finite sum, so we can rearrange it as:

$$
I(\phi)=\sum_{j \in J}\left(d_{j} \sum_{A \subset J: j \in A} \lambda\left(F_{A}\right)\right) .
$$

Now since each F_{j} is a disjoint union of the F_{A} where $j \in A$, we see by finite additivity of measure,

$$
I(\phi)=\sum_{j \in J} d_{j} \lambda\left(F_{j}\right)
$$

which is the expression sought.
(c) Infer from (b) that the map I from simple functions to \mathbb{R} given by $\phi \mapsto I(\phi)$ is linear.

Solution: Suppose $a \in \mathbb{R}$ and $\phi=\sum_{i} c_{i} \chi_{E_{i}}$. Observe that $a \phi$ also a simple function and has expression

$$
a \phi=\sum_{i} a c_{i} \chi_{E_{i}} .
$$

Thus,

$$
I(a \phi)=\sum_{i} a c_{i} \lambda\left(E_{i}\right)=a \sum_{i} c_{i} \lambda\left(E_{i}\right)=a I(\phi) .
$$

Now suppose $\phi=\sum_{i} c_{i} \chi_{E_{i}}$ and $\psi=\sum_{j} d_{j} \chi_{F_{j}}$. Then,

$$
\sum_{i} c_{i} \chi_{E_{i}}+\sum_{j} d_{j} \chi_{F_{j}}
$$

is an expression of $\phi+\psi$. We conclude that the sum satisfies:

$$
I(\phi+\psi)=\sum_{i} c_{i} \lambda\left(E_{i}\right)+\sum_{j} d_{j} \lambda\left(F_{j}\right)=I(\phi)+I(\psi) .
$$

(d) Given a measurable function $f: \mathbb{R} \rightarrow[0, \infty)$, show there exists a pointwise increasing sequence of simple functions $\left\{\phi_{n}\right\}$ whose pointwise limit is f.

Solution: For a natural number n, let

$$
Y_{n}=\left\{\frac{p}{2^{n}}: p \in \mathbb{N} \text { and } \frac{p}{2^{n}} \in[0, n] .\right\} .
$$

Then define

$$
\phi_{n}=\sum_{y \in Y_{n}} y \chi_{f^{-1}\left(\left[y, y+\frac{1}{2^{n}}\right)\right)} .
$$

To see that ϕ_{n} is increasing observe that $Y_{n} \subset Y_{n+1}$. The value of ϕ_{n} at x is the greatest value less than or equal to $f(x)$. Thus, $Y_{n} \subset Y_{n+1}$ implies $\phi_{n}(x) \leq \phi_{n+1}(x)$. Also observe that if $f(x)<n$, then

$$
\left|f(x)-\phi_{n}(x)\right|<\frac{1}{2^{n}} .
$$

This eventually holds for any x, so $\phi_{n} \rightarrow f$ pointwise.
(e) Show that for any two such sequences $\left\{\phi_{n}\right\}$ and $\left\{\psi_{n}\right\}$ increasing to f as in part (d),

$$
\lim _{n \rightarrow \infty} I\left(\phi_{n}\right)=\lim _{n \rightarrow \infty} I\left(\psi_{n}\right)
$$

Therefore, the definition of $I(f)$ as this limit is well-defined.
Solution: First observe that the integrals $I\left(\phi_{n}\right)$ and $I\left(\psi_{n}\right)$ are increasing. (It can be proven that $I\left(\phi_{n}\right) \leq I\left(\phi_{n+1}\right)$ by choosing an expression for both functions using the same collection of sets E_{i} and comparing the formula for the integral termwise.) In particular

$$
\lim _{n \rightarrow \infty} I\left(\phi_{n}\right)=\sup _{n} I\left(\phi_{n}\right) \quad \text { and } \quad \lim _{n \rightarrow \infty} I\left(\psi_{n}\right)=\sup _{n} I\left(\psi_{n}\right) .
$$

This suggests a path to a proof. We will show that for any n and any real number $\alpha<I\left(\phi_{n}\right)$, there is an m so that $I\left(\psi_{m}\right) \geq \alpha$. This directly implies that $\sup _{n} I\left(\psi_{n}\right) \geq$ $\sup _{n} I\left(\phi_{n}\right)$. Our argument will be independent of the choice of sequences $\left\{\phi_{n}\right\}$ and $\left\{\psi_{n}\right\}$ so the same argument will yield $\sup _{n} I\left(\psi_{n}\right) \leq \sup _{n} I\left(\phi_{n}\right)$, so we get equality.

We will be proving that for any n and any $\alpha<I\left(\phi_{n}\right)$, there is an m so that $I\left(\psi_{m}\right) \geq \alpha$. From prior work, we can assume ϕ_{n} is given by a canonical expression, say

$$
\phi_{n}=\sum_{i} c_{i} \chi_{E_{i}} .
$$

For each $N \in \mathbb{N}$, observe that $\chi_{[-N, N]} \phi_{n}$ is also a step function. Indeed,

$$
\chi_{[-N, N]} \phi_{n}=\sum_{i} c_{i} \chi_{E_{i} \cap[-N, N]} .
$$

The sets $E_{i} \cap[-N, N]$ increase to E_{i}, so by measure continuity, $I\left(\chi_{[-N, N]} \phi_{n}\right) \rightarrow I\left(\phi_{n}\right)$. In particular, we can choose an N so that $I\left(\chi_{[-N, N]} \phi_{n}\right)>\alpha$. For notational convenience, define $\phi_{n}^{\prime}=\chi_{[-N, N]} \phi_{n}$ and $E_{i}^{\prime}=E_{i} \cap[-N, N]$.

Now we have $\alpha<I\left(\phi_{n}^{\prime}\right)<\infty$. Let $M<\infty$ denote the maximum value taken by ϕ_{n}^{\prime}. We can choose an $\epsilon>0$ so that

$$
\alpha<I\left(\phi_{n}^{\prime}\right)-(2 N+M) \epsilon .
$$

Now consider the increasing sequence ψ_{m}, which converges pointwise to a function f which is pointwise larger than ψ_{n}^{\prime}. Then for any x there is an m so that

$$
\psi_{m}(x)>\phi_{n}^{\prime}(x)-\epsilon
$$

Then for any m, we can consider the bad points

$$
B_{m}=\left\{x: \psi_{m}(x) \leq \phi_{n}^{\prime}(x)-\epsilon\right\} .
$$

Our prior remark tells us that $\bigcap B_{m}=\emptyset$. Observe $B_{m} \subset[-N, N]$ since $\phi_{n}^{\prime}(x)=0$ outside $[-N, N]$, while each ϕ_{m} is non-negative. Thus, B_{m} have finite measure and so measure continuity tells us that $\lambda\left(B_{m}\right) \rightarrow 0$. Therefore, we can choose m so large that $\lambda\left(B_{m}\right)<\epsilon$. We claim that ψ_{m} works. In summary, by construction we have

$$
\psi_{m}(x) \geq 0 \text { for } x \in B_{m} \text { and } \psi_{m}(x)>\max \left\{0, \phi_{n}^{\prime}(x)-\epsilon\right\} \text { for } x \in[-N, N] \backslash B_{m}
$$

In other words, we have the following pointwise inequality:

$$
\psi_{m} \geq \phi_{n}^{\prime}-\epsilon \chi_{[-N, N] \backslash B_{m}}-\phi_{n}^{\prime} \chi_{B_{m}}
$$

Let ξ denote the expression at right. We have $I\left(\psi_{m}\right) \geq I(\xi)$. Now observe the following inequalities involving the terms of ξ :

$$
\begin{gathered}
\left.I\left(\chi_{[-N, N] \backslash B_{m}}\right) \leq I\left(\chi_{[}-N, N\right]\right)=2 N . \\
I\left(\phi_{n}^{\prime} \chi_{B_{m}}\right) \leq I\left(M \chi_{B_{m}}\right)=M \lambda\left(B_{m}\right)<M \epsilon
\end{gathered}
$$

Therefore, by linearity and the definition of ϵ, we have
$I(\xi)=I\left(\phi_{n}^{\prime}\right)-\epsilon I\left(\chi_{[-N, N] \backslash B_{m}}\right)-I\left(\phi_{n}^{\prime} \chi_{B_{m}}\right) \geq I\left(\phi_{n}^{\prime}\right)-\epsilon(2 N)-M \epsilon=I\left(\phi_{n}^{\prime}\right)-(2 N+M) \epsilon>\alpha$.
Then, $I\left(\psi_{m}\right)>I(\xi)>\alpha$ as required.
(f) Show that the function I from the space of measurable functions $\mathbb{R} \rightarrow[0, \infty)$ to \mathbb{R} given by $f \mapsto I(f)$ is linear.

Solution: Let a and b be positive real numbers and $f, g: \mathbb{R} \rightarrow[0, \infty)$ be measurable. Let $\left\{\phi_{n}\right\}$ and $\left\{\psi_{n}\right\}$ be increasing sequences of step functions whose pointwise limits are f and g. Then $\left\{a \phi_{n}+b \psi_{n}\right\}$ is an increasing sequence of step functions converging to $a f+b g$. It then follows by definition that

$$
I(a f+b g)=\lim _{n \rightarrow \infty} I\left(a \phi_{n}+b \psi_{n}\right)
$$

Then by linearity of I action on the space of step functions, we have

$$
I(a f+b g)=\lim _{n \rightarrow \infty} a I\left(\phi_{n}\right)+b I\left(\psi_{n}\right)=a \lim _{n \rightarrow \infty} I\left(\phi_{n}\right)+b \lim _{n \rightarrow \infty} I\left(\psi_{n}\right)=a I(f)+b I(g) .
$$

2. (Pugh, Chapter $6 \# 30$) Find a sequence of measurable functions $f_{n}:[0,1] \rightarrow[0,1]$ such that $\int f_{n} \rightarrow 0$ as $n \rightarrow \infty$, but for no $x \in[0,1]$ does $f_{n}(x)$ converge to a limit as $n \rightarrow \infty$.

Solution: Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers with $0<a_{n} \leq 1$ for all n so that $a_{n} \rightarrow 0$ and so that the partial sums $b_{N}=\sum_{n=1}^{N} a_{n}$ tend to infinity. (For example $a_{n}=\frac{1}{n}$.) Define

$$
f_{n}(x)= \begin{cases}1 & \text { if there is an } m \in \mathbb{Z} \text { so that } x \in\left[b_{n}, b_{n+1}\right) \\ 0 & \text { otherwise } .\end{cases}
$$

Observe that

$$
\int f_{n}=b_{n+1}-b_{n}=a_{n}
$$

which tends to zero as $n \rightarrow \infty$ by hypothesis. Now fix x. We will show that $f_{n}(x)$ does not tend to zero by showing $f_{n}(x)=1$ infinitely often. To see this observe that

$$
[0, \infty)=\bigcup_{n}\left[b_{n}, b_{n+1}\right)
$$

So, for each integer $m \geq 0$, there is an $n=n(m)$ so that $x+m \in\left[b_{n}, b_{n+1}\right)$. Since each interval $\left[b_{n}, b_{n+1}\right)$ has length $a_{n} \leq 1$, the mapping $m \mapsto n(m)$ is injective. The image of this map provides the infinitely many n for which $f_{n}(x)=1$.
3. Let $\left\{f_{n}: n \in \mathbb{N}\right\}$ be a sequence of measurable functions $\mathbb{R} \rightarrow[0, \infty)$. Define $g_{k}=\inf _{n \geq k} f_{n}$, i.e.,

$$
g_{k}(x)=\inf \left\{f_{n}(x): n \geq k\right\} .
$$

Define $h=\liminf _{n \rightarrow \infty} f_{n}$, i.e.,

$$
h(x)=\lim _{k \rightarrow \infty} g_{k}(x) .
$$

(a) Show that g_{k} is measurable for all $k \in \mathbb{N}$. Explain why $\int g_{k} \leq \int f_{n}$ when $n \geq k$.

Solution: To show g_{k} is measurable, it suffices to show that $g_{k}^{-1}((-\infty, y))$ is measurable for all $y \in \mathbb{R}$. Observe $g_{k}^{-1}((-\infty, y))=g_{k}^{-1}([0, y))$ since g_{k} is non-negative.

Since $g_{k}=\inf _{n \geq k} f_{n}$, we see that $g_{k}(x) \in[0, y)$ if and only if there is an $n \geq k$ so that $f_{n}(x) \in[0, y)$. Therefore,

$$
g_{k}^{-1}([0, y))=\bigcup_{n \geq k} f_{n}^{-1}([0, y))
$$

This is a countable union of measurable sets and therefore measurable.
To see that $\int g_{k} \leq \int f_{n}$ for $n \geq k$, observe that $g_{k} \leq f_{n}$ pointwise.
(b) Prove Fatou's lemma. (Sometimes called Fatou's theorem). Prove that h is measurable and $\int h \leq \liminf _{n \rightarrow \infty} \int f_{n}$. (Hint: Use the monotone convergence theorem. Remark: Sometimes Fatou's lemma is used to prove the monotone convergence theorem, though we did not do this.)

Solution: Observe that $g_{k}=\inf _{n \geq k} f_{n}$ is increasing as k increases, since g_{k+1} is an infimum over a smaller set of functions. The monotone convergence theorem then directly implies that $h=\lim _{k \rightarrow \infty} g_{k}$ is measurable and that

$$
\int h=\lim _{k \rightarrow \infty} \int g_{k} .
$$

To finish the proof, recall from the previous part that $\int g_{k} \leq \int f_{k}$ for all k. Thus,

$$
\int h=\liminf _{k \rightarrow \infty} \int g_{k} \leq \liminf _{k \rightarrow \infty} \int f_{k}
$$

4. (Pugh, Chapter $6 \# 55$) A sequence of measurable functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ converges to measurable $f:[a, b] \rightarrow \mathbb{R}$ nearly uniformly if for every ϵ, there is a measurable set $S \subset[a, b]$ with $\lambda(S)<\epsilon$ so that $f_{n} \rightarrow f$ uniformly on $[a, b] \backslash S$. Show that nearly uniform convergence is transitive in the following sense. Assume f_{n} converges to f nearly uniformly as $n \rightarrow \infty$ and that for each n there is a sequence of measurable functions $f_{n, k}$ which converges nearly uniformly to f_{n} as $k \rightarrow \infty$. We will show that there is a choice of a map $n \mapsto k(n)$ so that the sequence $f_{n, k(n)}$ tends to f nearly uniformly as $n \rightarrow \infty$. (All functions are measurable and defined on $[a, b]$.)
(a) Show that there is a sequence $k(n) \rightarrow \infty$ such that $f_{n, k(n)}$ converges nearly uniformly to f as $n \rightarrow \infty$.

Solution: Suppose $f_{n} \rightarrow f$ nearly uniformly and for all $n, f_{n, k} \rightarrow f_{n}$ nearly uniformly. We will begin by explaining how to produce the function $n \mapsto k(n)$.

Since $f_{n, k} \rightarrow f_{n}$ nearly uniformly, we can choose for each n a set S_{n} with $\lambda\left(S_{n}\right)<\frac{1}{2^{n}}$ and a $k=k(n)$ so that

$$
\left|f_{n, k(n)}-f_{n}\right|<\frac{1}{2^{n}} \quad \text { on the set }[a, b] \backslash S_{n}
$$

Now we prove the following:
Lemma. Suppose $f_{n} \rightarrow f$ uniformly on a set $[a, b] \backslash S$. Let $N \in \mathbb{N}$ and let $S^{\prime}=$ $S \cup \bigcup_{n=N}^{\infty} S_{n}$. Then $f_{n, k(n)} \rightarrow f$ uniformly on $[a, b] \backslash S^{\prime}$.

We will prove the lemma by verifying that $f_{n, k(n)} \rightarrow f$ uniformly on $[a, b] \backslash S^{\prime}$. Fix some $\epsilon>0$ for verifying uniform convergence. Since $f_{n} \rightarrow f$ uniformly on $[a, b] \backslash S$, we can find an M_{1} so that

$$
n>M_{1} \quad \text { implies } \quad\left|f(x)-f_{n}(x)\right|<\frac{\epsilon}{2} \quad \text { for } x \in[a, b] \backslash S .
$$

Observe $[a, b] \backslash S \supset[a, b] \backslash S^{\prime}$, so this also holds here. Now we can choose M_{2} so that $\frac{1}{2^{n}}<\frac{\epsilon}{2}$ when $n>M_{2}$. Then by definition of S_{n} and $k(n)$, we see

$$
n>M_{2} \quad \text { implies } \quad\left|f_{n}(x)-f_{n, k(n)}(x)\right|<\frac{\epsilon}{2} \quad \text { for } x \in[a, b] \backslash S_{n} .
$$

Again this also holds for $x \in[a, b] \backslash S^{\prime}$ since this is a smaller set. Combining these two facts, we see for $n>\max \left\{M_{1}, M_{2}\right\}$ and $x \in[a, b] \backslash S^{\prime}$, by the triangle inequality,

$$
\left|f(x)-f_{n, k(n)}(x)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n, k(n)}(x)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

We have verified by definition that $f_{n, k(n)} \rightarrow f$ uniformly on $[a, b] \backslash S^{\prime}$, which proves the lemma.

With the lemma we can now show that $f_{n, k(n)} \rightarrow f$ nearly uniformly. Fix some $\epsilon>0$. Since $f_{n} \rightarrow f$ nearly uniformly, there is a set S with $\lambda(S)<\frac{\epsilon}{2}$ so that $f_{n} \rightarrow f$ uniformly on $[a, b] \backslash S$. We can also choose an $N \in \mathbb{N}$ so that

$$
\sum_{n=N}^{\infty} \frac{1}{2^{n}}<\frac{\epsilon}{2}
$$

As in the lemma, define the set

$$
S^{\prime}=S \cup \bigcup_{n=N}^{\infty} S_{n}
$$

Observe that we have arranged that $\lambda\left(S^{\prime}\right)<\epsilon$ by countable subadditivity. Furthermore, the lemma tells us that $f_{n, k(n)} \rightarrow f$ nearly uniformly on S^{\prime}, which concludes the proof.
(b) Why does (a) remain true when almost everywhere convergence replaces nearly uniform convergence?

Solution: Suppose $f_{n} \rightarrow f$ almost everywhere, and $f_{n, k} \rightarrow f_{n}$ almost everywhere. We will find a function $n \mapsto k(n)$ so that $f_{n, k(n)} \rightarrow f$ almost everywhere.

Fix n. Observe that for almost every $x, f_{n, k}(x) \rightarrow 0$. Then we can consider the set of
bad points

$$
B_{k}=\left\{x \in[a, b]:\left|f_{n, k}(x)-f_{n}(x)\right| \geq \frac{1}{2^{n}}\right\}
$$

By definition of convergence almost everywhere, we see that $\bigcap_{K \in \mathbb{N}} \bigcup_{k \geq K} B_{k}$ is a subset of those points which never converge to zero, and hence a zero set. The sequence of sets $\bigcup_{k \geq K} B_{k}$ is decreasing as K increases and is contained in $[a, b]$, so we see that $\lambda\left(\bigcup_{k \geq K} B_{k} \rightarrow 0\right.$ as $K \rightarrow 0$. Observe $\lambda\left(B_{K}\right)<\lambda\left(\bigcup_{k \geq K} B_{k}\right.$, so $\lambda\left(B_{K}\right) \rightarrow 0$ also. We conclude that there is a $k(n)$ so that $\lambda\left(B_{k(n)}\right) \leq \frac{1}{2^{n}}$. In summary, we have

$$
\begin{equation*}
\left|f_{n, k}(x)-f_{n}(x)\right|<\frac{1}{2^{n}} \quad \text { for } x \in[a, b] \backslash B_{k(n)} \tag{1}
\end{equation*}
$$

and $\lambda\left(B_{k(n)}\right)<\frac{1}{2^{n}}$.
Now we may repeat the same concluding argument as before. To see that $f_{n, k(n)} \rightarrow f_{n}$ almost everywhere, it suffices to prove that it converges on a set of measure arbitrarily close to $\lambda([a, b])$. Fix $\epsilon>0$. Then we can choose an N so that

$$
\sum_{n=N}^{\infty} \frac{1}{2^{n}}<\epsilon
$$

Set $B^{\prime}=\bigcup_{n=N}^{\infty} B_{k(n)}$. We have $\lambda\left(B^{\prime}\right)<\sum_{n=N}^{\infty} \frac{1}{2^{n}}<\epsilon$.. Furthermore, by equation 1 , we have

$$
\lim _{n \rightarrow \infty}\left|f_{n, k}(x)-f_{n}(x)\right| \rightarrow 0 \quad \text { for } x \in[a, b] \backslash B^{\prime}
$$

Now let Z be the zero set of points x so that $f_{n}(x) \nrightarrow f(x)$. Then if $x \in[a, b] \backslash Z$, we have $\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. We conclude that when $x \in[a, b] \backslash\left(B^{\prime} \cup Z\right)$, we have

$$
\left|f_{n, k}(x)-f(x)\right| \leq\left|f_{n, k}(x)-f_{n}(x)\right|+\left|f_{n}(x)-f(x)\right|<\frac{1}{2^{n}}+\left|f_{n}(x)-f(x)\right|
$$

and the right hand side tends to zero as $n \rightarrow \infty$, so the left side does as well. Observe that $\lambda\left([a, b] \backslash\left(B^{\prime} \cup Z\right)\right) \geq b-a-\epsilon$, so we have shown convergence on sets arbitrarily close to full measure. Taking a countable union of such sets whose measure tends to full measure yields a set of full measure on which $f_{n} \rightarrow f$.

