Math 70100: Functions of a Real Variable I Homework 11, due Wednesday, November 26th. (Email your homework in if necessary!)

1. (Modified from Pugh, Chapter 6 # 28) A non-negative linear combination of measurable characteristic functions is a simple function (or step function). That is, a simple function has the form

$$\phi(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(c)$$

where E_1, \ldots, E_n are measurable sets and c_1, \ldots, c_n are non-negative constants. (The *charac*teristic function of $E \subset \mathbb{R}$ is the function $\chi_E : \mathbb{R} \to \{0, 1\}$ so that $\chi_E(x) = 1$ if and only if $x \in E$.) We say that $\sum c_i \chi_{E_i}$ expresses ϕ . If the E_i are disjoint and the c_i are distinct and positive, then the expression for ϕ is called *canonical*.

- (a) Show that a canonical expression for a simple function exists and is unique. (*Remark: It might be useful to review part (b) to see if you want to prove more here.*)
- (b) If ϕ is a simple function with canonical representation $\sum_{i=1}^{n} c_i \chi_{E_i}$, define the "integral" $I(\phi) = \sum_i c_i \lambda(E_i)$. Show that if $\sum_{j=1}^{m} d_j \chi_{F_j}$ is a (not-necessarily canonical) expression of ϕ , then

$$I(\phi) = \sum_{j=1}^{n} d_j \lambda(F_j).$$

- (c) Infer from (b) that the map I from simple functions to \mathbb{R} given by $\phi \mapsto I(\phi)$ is linear.
- (d) Given a measurable function $f : \mathbb{R} \to [0, \infty)$, show there exists a pointwise increasing sequence of simple functions $\{\phi_n\}$ whose pointwise limit is f.
- (e) Show that for any two such sequences $\{\phi_n\}$ and $\{\psi_n\}$ increasing to f as in part (d),

$$\lim_{n \to \infty} I(\phi_n) = \lim_{n \to \infty} I(\psi_n).$$

Therefore, the definition of I(f) as this limit is well-defined.

- (f) Show that the function I from the space of measurable functions $\mathbb{R} \to [0, \infty)$ to \mathbb{R} given by $f \mapsto I(f)$ is linear.
- 2. (Pugh, Chapter 6 # 30) Find a sequence of measurable functions $f_n : [0,1] \to [0,1]$ such that $\int f_n \to 0$ as $n \to \infty$, but for no $x \in [0,1]$ does $f_n(x)$ converge to a limit as $n \to \infty$.
- 3. Let $\{f_n : n \in \mathbb{N}\}\$ be a sequence of measurable functions $\mathbb{R} \to [0, \infty)$. Define $g_k = \inf_{n \geq k} f_n$, i.e.,

$$g_k(x) = \inf \{f_n(x) : n \ge k\}.$$

Define $h = \liminf_{n \to \infty} f_n$, i.e.,

$$h(x) = \lim_{k \to \infty} g_k(x).$$

(a) Show that g_k is measurable for all $k \in \mathbb{N}$. Explain why $\int g_k \leq \int f_n$ when $n \geq k$.

- (b) Prove Fatou's lemma. Prove that h is measurable and $\int h \leq \liminf_{n\to\infty} \int f_n$. (*Hint: Use the monotone convergence theorem. Remark: Sometimes Fatou's lemma is used to prove the monotone convergence theorem, though we did not do this.*)
- 4. (Pugh, Chapter 6 # 55) A sequence of measurable functions $f_n : [a, b] \to \mathbb{R}$ converges to $f : [a, b] \to \mathbb{R}$ nearly uniformly if for every ϵ , there is a set $S \subset [a, b]$ with $\lambda(S) < \epsilon$ so that $f_n \to f$ uniformly on $[a, b] \smallsetminus S$. Show that nearly uniform convergence is transitive in the following sense. Assume f_n converges to f nearly uniformly as $n \to \infty$ and that for each n there is a sequence $f_{n,k}$ which converges nearly uniformly to f_n as $k \to \infty$. (Al functions are measurable and defined on [a, b].)
 - (a) Show that there is a sequence $k(n) \to \infty$ such that $f_{n,k(n)}$ converges nearly uniformly to f as $n \to \infty$.
 - (b) Why does (a) remain true when almost everywhere convergence replaces nearly uniform convergence?