
Math 70100: Functions of a Real Variable I
Homework 10, due Wednesday, November 19th.

Remark on conventions: By convention, a measurable set in R is a Lebesgue measurable set. If
E ⊂ R is (Lebesgue) measurable and f : E → R is a function, then by convention f is measurable
if it is (L,B)-measurable, i.e., if the preimage of every Borel measurable set in R is a Lebesgue
measurable subset of E.

1. (Modified from Royden-Fitzpatrick, §2.7 # 46) Let X and Y be topological spaces. Prove that
every continuous function f : X → Y is Borel measurable. That is, prove that the preimage of
a Borel set in Y is a Borel set in X. (Hint: The collection of sets E for which f−1(E) is Borel
is a σ-algebra containing the open sets.)

Solution: We follow the hint. Let BX and BY be the Borel σ-algebras on X and Y ,
respectively. Define

Σ = {E ⊂ Y : f−1(E) is Borel}.

Our claim that f−1(E) is Borel whenever E is Borel, then becomes the statement that
BY ⊂ Σ.

First we claim that Σ is a σ-algebra. We need to show it is closed under compliments and
countable unions. Suppose E ∈ Σ. Then f−1(E) ∈ BX is Borel. Observe that

f−1(Ec) = f−1(E)c ∈ BX .

Therefore, Ec ∈ Σ. Now suppose {Ei} ⊂ Σ is a countable subset. Then,

f−1
(⋃

i

Ei
)

=
⋃
i

f−1(Ei).

Since each f−1(Ei) ∈ BX , we know that f−1
(⋃

iEi
)
∈ BX . Thus,

⋃
iEi ∈ Σ. This finishes

the proof that Σ is a σ-algebra.

Let U ⊂ Y be open. Because f is continuous, we know f−1(U) is open and hence f−1(U) ∈
BX . We conclude that U ∈ Σ for every U ⊂ Y open.

In summary, Σ is a σ-algebra for Y containing the open sets. By definition BY is the smallest
σ-algebra containing the open subsets of Y . Therefore BX ⊂ Σ. Thus, the preimage of every
Borel set is Borel.

2. Let E ⊂ R be Lebesgue measurable and f : E → R be a function. Let g : E → R be another
function. We say f = g almost everywhere if there is a subset Z ⊂ E of Lebesgue measure
zero so that f(x) = g(x) for all x ∈ E r Z. Show that if f = g almost everywhere and g is
measurable, then f is measurable.



Solution: Let Z ⊂ E be a subset of Lebesgue measure zero so that f(x) = g(x) for
x ∈ E r Z. To prove that f is measurable, it suffices to prove that f−1(B) is Lebesgue
measurable for every Borel set B ⊂ R. Since g is measurable g−1(B) is measurable. Since
f = g on E r Z, there is a subset W ⊂ Z so that

f−1(B) =
(
g−1(B) ∩ (E r Z)

)
∪W.

Since W ⊂ Z and Lebesgue measure is compete, W is also Lebesgue measurable. From the
expression above, we see f−1(B) is measurable as well.

3. Let {Ei ⊂ R} be a countable collection of measurable sets, and let E =
⋃
iEi. Let f : E → R

be a function. Show that f is measurable if and only if f |Ei
is measurable for each i.

Solution: First suppose f is measurable. Fix i. We will show fEi
is measurable. Let B ⊂

R be a Borel set. Since f is measurable, f−1(B) is measurable. Then f |−1Ei
(B) = Ei∩f−1(B)

is measurable because both Ei and f−1(B) are measurable.

Now suppose each f |Ei
is measurable. Let B ⊂ R be Borel. Observe that

f−1(B) =
⋃
i

f |−1Ei
(B)

is measurable because each f |−1Ei
(B) is measurable.

4. (Royden-Fitzpatrick §3.1 #9) Let fn be a sequence of measurable functions defined on a mea-
surable set E ⊂ R. Define E0 to be the set of points x in E at which {fn(x)} converges. Is the
set E0 measurable? If so, prove it. Otherwise, explain how to produce a counterexample.

Solution: The set E0 is measurable. To prove it, we will use the fact that {fn(x)} converges
if and only if the sequence is Cauchy. We observe that {fn(x)} is Cauchy if and only if for
all natural numbers p, there is an N ∈ N so that for all n,m ∈ N with n,m > N we have
|fn(x)− fm(x)| < 1

p
.

Let p, n,m ∈ N. Observe that because fn and fm are measurable, so is fn − fm. Therefore,
the set

Ap,n,m = {x ∈ E : |fn(x)− fm(x)| < 1

p
} = (fn − fm)−1

(
(−1

p
,
1

p
)
)

is measurable. Observe that x is Cauchy if and only if it lies in the set⋂
p∈N

⋃
N∈N

⋂
n,m∈N; n,m>N

Ap,n,m.

Since a sequence converges if and only if it is Cauchy, this set is E0, which is measurable
because each Ap,n,m is measurable, and because we are only using countable intersections
and unions above.
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5. (Modified from Pugh: Chapter 6 # 54)
Egoroff’s theorem. Let E ⊂ R be a measurable set of finite Lebesgue measure, and let {fn}
be a sequence of functions which converges almost everywhere (i.e., there is a set Z ⊂ E of zero
Lebesgue measure so that {fn(x)} converges when x ∈ E r Z). Then for each ε > 0 there is a
measurable set S ⊂ E with λ(E r S) < ε such that {fn(x)} converges uniformly for x ∈ S.

Prove Egoroff’s theorem by using the following steps. Setup: Let E ⊂ R be a measurable set of
finite Lebesgue measure, and suppose {fn : E → R} converges almost everywhere. Thus, there
is a zero set Z and a f : E r Z → R so that {fn(x)} converges to f(x) for x ∈ E r Z.

(a) For k, ` ∈ N, set

X(k, `) = {x ∈ E r Z : ∀n ≥ k, |fn(x)− f(x)| < 1/`}.

Observe these sets are measurable. Show that for each `, E r Z =
⋃
kX(k, `).

Solution: The sets are measurable because they are intersections over integers n ≥ k
of (fn − f)−1

(
(−1
`
, 1
`
)
)
.

The second statement holds by definition. Fix ` and choose x ∈ E r Z. Then since
{fn(x)} converges to f(x), there is an n so that k ≥ n implies |fn(x)− f(x)| < 1

`
. So,

x ∈ X(k, `).

(b) Given ε > 0, show that there is a sequence {k` ∈ R : ` ∈ N} so that by defining
X` = X(k`, `), we have λ(E r Z rX`) <

ε
2`
.

Solution: Fix ` and ε. Observe that X(k, `) ⊂ X(k+ 1, `) for all k ∈ N. Since ErZ
is the union over k of these sets, by continuity of measure, we see that λ

(
X(k, `)

)
increases monotonically in k to λ(E r Z). In particular because E r Z has finite
measure, we can choose an k` so that

λ
(
E r Z rX(k`, `)

)
= λ(E r Z)− λ

(
X(k`, `)

)
<

ε

2`
.

(c) Let X =
⋂
`X`. Show that λ

(
E r X

)
< ε and that {fn|X} converges uniformly to f |X .

(Don’t give two meanings to ε!)

Solution: Since Z has measure zero, λ(E r Z rX`) = λ(E rX`). These quantities
are less than ε/2`. So, ∑

`

λ
(⋃

`

E rX`

)
< ε.

Observe that
E rX = E r

⋂
`

X` =
⋃
`

(E rX`),

so countable subadditivity implies that λ(E rX) < ε.
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Now we claim that {fn|X} converges uniformly to f |X . Choose η > 0. Then we can
select an ` so that 1

`
< η. To verify uniform convergence on X, it suffices to verify that

x ∈ X and n ≥ k` implies |fn(x)− f(x)| < 1

`
.

But this is true because x ∈ X ⊂ X` = X(k`, `), and the above is true for x ∈ X(k`, `)
by definition.

6. Show that Egoroff’s theorem is not necessarily true when E has infinite measure.

Solution: Define fn(x) = (1− 1
n
)x for n ∈ N and x ∈ R. Clearly f converges everywhere

to f(x) = x. On the other hand if ε > 0 and S ⊂ R is any subset with λ(R r S) < ε, we
would have λ(S) = ∞ and we conclude that S is unbounded. Let {xk ∈ S} be a sequence
tending to ±∞. Then it can not be true that fn → f uniformly on S. Indeed suppose the
convergence was uniform on S. Then there would be an N so that x ∈ S and n > N implies
|fn(x)− f(x)| < 1. But, fixing some n > N , we see that

|fn(x)− f(x)| = 1

n
|x|.

In particular,

lim
k→∞
|fn(xk)− f(xk)| = lim

k→∞

1

n
|xk| =∞,

because the sequence {xk} is unbounded. On the other hand, because each xk ∈ S, these
numbers should all be bounded by 1. This is a contradiction.

7. (Pugh, Chapter 6 #50) Construct a monotone function f : [0, 1] → R whose discontinuity set
is exactly Q ∩ [0, 1] or show that such a function can not exist. Prove your answer is correct.

Solution: (The distribution function for a countable weighted sum of point mass measures
works! Here we use µ =

∑
r∈Q α(r)δr, where δr is the measure defined by δ(A) = 1 if r ∈ A

and δ(A) = 0 if r 6∈ A.)

Such a function can exist. Recall that Q∩ [0, 1] is countable. For each r ∈ Q∩ [0, 1], choose
a real number α(r) > 0 so that ∑

r∈Q∩[0,1]

α(r) <∞.

Now define a function

f : [0, 1]→ R; x 7→
∑

r∈Q∩[0,1]; r<x

α(r).

Note that this converges because any sum over a subsequence of a convergent series also
converges. This function is monotone, because if x < y, then

f(y)− f(x) =
∑

r∈[x,y)∩Q

α(r) > 0. (1)
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It is discontinuous at each x ∈ Q because if y > x, then

f(x)− f(y) > α(x) > 0.

Now we will show it is continuous when x 6∈ Q. Choose an ε > 0. We will first verify that
it is right-continuous at x. Because the series converges, there is a finite set F ⊂ Q ∩ [0, 1]
so that ∑

r∈(Q∩[0,1])rF

α(r) < ε.

Observe that ⋂
y>0

Q ∩ [x, y) = ∅.

So, there is a y > x so that Q∩ [x, y) ⊂ (Q∩ [0, 1])rF . Thus, f(y)− f(x) < ε by equation
1, which verifies right-continuity at x. The same argument proves that f is left-continuous
at x, because

⋂
y<xQ ∩ [y, x) = ∅.
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