Math 70100: Functions of a Real Variable I Homework 1, due Wednesday, September 10th.

- 1. (Based on Pugh 2.92) Let X be a topological space. Recall that a neighborhood N of $x \in X$ is a subset $N \subset X$ so that there is an open set $U \subset X$ with $x \in U$ and $U \subset N$. A boundary point of a set $A \subset X$ is a point $x \in X$ so that every neighborhood of x intersects both A and $X \setminus A$. The boundary of A, ∂A , is the set of all boundary points of A.
 - (a) Show that $\partial A = X \setminus (\operatorname{Int}(A) \cup \operatorname{Int}(X \setminus A)).$
 - (b) Explain why ∂A is closed.
 - (c) Show that $\partial \partial A \subset \partial A$.
 - (d) Show that $\partial \partial \partial A = \partial \partial A$.
 - (e) Given an example which illustrates that $\partial \partial A$ may not equal ∂A .
- 2. (Pugh 2.37) Let C denote the vector space of continuous functions from [0, 1] to \mathbb{R} . This space can be endowed with the sup (or L^{∞}) norm,

$$|f| = \sup \{|f(x)| : x \in [0,1]\}$$

or the L^1 norm,

$$||f|| = \int_0^1 |f(x)| \, dx.$$

Consider the identity map between *id* from $(C, |\cdot|)$ to $(C, ||\cdot|)$.

- (a) Show that *id* is a continuous. (Thus it is a continuous linear bijection.)
- (b) Show that the inverse id^{-1} is not continuous.
- 3. (Modified from Lang II.5.3a) Let ℓ^1 be the set of all sequences $\alpha = \{a_n\}_{n \in \mathbb{N}}$ of real numbers such that $\sum_{n \in \mathbb{N}} |a_n|$ converges. Define

$$|\alpha| = \sum_{n \in \mathbb{N}} |a_n|.$$

- (a) Prove that $|\cdot|$ is a norm on ℓ^1 .
- (b) Recall that a sequence $\{\alpha_n\}$ in a normed vector space is *Cauchy* if given any $\epsilon > 0$, there is an $N \in \mathbb{N}$ so that $|\alpha_m \alpha_n| < \epsilon$ for $m, n \ge N$. A normed vector space is *complete* if all Cauchy sequences converge. Show that ℓ^1 is complete with the norm $|\cdot|$.
- 4. (Lang II.13) The diagonal Δ is the set of all points (x, x).
 - (a) Show that a space X is Hausdorff if and only if the diagonal is closed in $X \times X$.
 - (b) Show that a product of Hausdorff spaces is Hausdorff.
- 5. (Lang II.5.5c) Let X be a metric space. For each $x \in X$, define the function f_x on X by $f_x(y) = d(x, y)$. Let $\|\cdot\|$ be the sup norm.
 - (a) Show that $d(x, y) = ||f_x f_y||$.
 - (b) Let a be a fixed element of X, and let $g_x = f_x f_a$. Show that the map $x \mapsto g_x$ is a distance-preserving embedding of X into the normed space of bounded functions on X. (*Remark:* This shows that every metric space is isometric to a subset of a normed vector space.)

- 6. (Lang II.5.8ab) Let X be a topological space and E a vector space with norm $|\cdot|$. Let M(X, E) denote the set of all maps from X to E. Let B(X, E) denote the set of bounded maps from X to E endowed with the sup norm defined by $||f|| = \sup\{|f(x)| : x \in X\}$. Let $BC(X, E) \subset B(X, E)$ be the set of bounded continuous maps.
 - (a) Show that BC(X, E) is closed in B(X, E).
 - (b) A Banach space is a complete normed vector space. Show that if E is a Banach space, then B(X, E) is complete.
- 7. Let X be a topological space. Then, X is called *separable* if it has a countable base (or basis) for its topology. A set $A \subset X$ is *dense* (in X) if its closure $\overline{A} = X$.
 - (a) (Lang II.15) Show that a separable space has a countable dense subset.
 - (b) (Lang II.16a) Show that if X is a metric space and has a countable dense subset, then X is separable.
- 8. (Lang II.5.17). An open covering of a topological space X is a collection \mathcal{U} of open sets so that $X = \bigcup_{U \in \mathcal{U}} U$. A subcover is a subset $\mathcal{V} \subset \mathcal{U}$ which is still a cover (i.e., $X = \bigcup_{V \in \mathcal{V}} V$).
 - (a) Show that every open covering of a separable space has a countable subcovering.
 - (b) Show that a disjoint collection of open sets in a separable space is countable.
 - (c) Show that a base (or basis) for the topology of a separable space contains a countable base.