1. Let $f:[0,1) \to [0,1)$ be defined by $f(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{3} \\ 3x - \frac{3}{3} & \text{if } \frac{1}{3} \le x < \frac{2}{3} \\ 3x - \frac{3}{3} & \text{if } \frac{2}{3} \le x < 1. \end{cases}$

Consider the following subset of [0, 1).

$$U = \{x \in [0,1) : f^k(x) = 0 \text{ for some } k \ge 0.\}$$

Using symbolic dynamics, we have another equivalent definition of U.

$$U = \{\sum_{n=0}^{\infty} \frac{s_n}{3^{n+1}} : \text{ each } s_n \in \{0, 1, 2\} \text{ and there is a } k \text{ for which } s_k = 0.\}$$

Answer the following true or false questions. (5 points each)

(a) $\overline{\mathsf{F}}$ The set U is a Cantor set.

U contains the interval [0, 3]!

(b) _____ The set U is dense in [0,1).

True: If $x = \sum_{n=0}^{\infty} \frac{s_n}{3^{n+1}}$ then $\sum_{n=0}^{\infty} \frac{s_n}{3^{n+1}} \in U$ and is within $\frac{1}{3^{n+2}} \circ f(x)$.

(c) _____ There is an irrational point $x \in [0, 1)$ which is not in U.

For instance, @arentonerrezzz (0.12112111211112.); EU.

(d) F The map f is topologically transitive.

Suppose $O_f^{*}(x)$ was dense then $\exists n \in S$ that $f^{n}(x) \in (0, \frac{1}{3})$. Then $f^{n+K}(x) = 0$ for all $K \neq 0$. So $O_f^{*}(x)$ is finite and cannot be dense!

2. Let $f:[0,5] \to [0,5]$ be function which is graphed below.

Note that f(0) = 3, f(1) = 4, f(2) = 5, f(3) = 2, f(4) = 0 and f(5) = 1.

(a) (5 points) Let $I_1 = [0,1]$, $I_2 = [1,2]$, $I_3 = [2,3]$, $I_4 = [3,4]$ and $I_5 = [4,5]$. Draw the associated transition graph for f.

(b) (5 points) The point x = 0 is a point of period-6 under f. According to Sharkovskii's theorem, the map f must have points of which other periods?

All periods and a fixed point.

(c) (10 points) For each period you mentioned in part (b) give an itinerary for a point of that period.

fixed: 3°

period-2: (14)°

period-4: (1425)°

period-2k. (1425(14) k-2) 60

for k≥3° (1425(14) k-2)

3. Let $\Sigma_{\mathcal{G}}^+$ be the shift space of finite type whose transition matrix is $\mathbf{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

Powers of this matrix are given below.

$$\mathbf{T}^2 = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \mathbf{T}^3 = \begin{bmatrix} 3 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix} \quad \mathbf{T}^4 = \begin{bmatrix} 6 & 4 & 3 \\ 4 & 5 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$

$$\mathbf{T}^5 = \begin{bmatrix} 10 & 9 & 4 \\ 9 & 5 & 5 \\ 4 & 5 & 1 \end{bmatrix} \quad \mathbf{T}^6 = \begin{bmatrix} 19 & 14 & 9 \\ 14 & 14 & 5 \\ 9 & 5 & 5 \end{bmatrix} \quad \mathbf{T}^7 = \begin{bmatrix} 33 & 28 & 14 \\ 28 & 19 & 14 \\ 14 & 14 & 5 \end{bmatrix}$$

Assume the vertices of \mathcal{G} are labeled by $\{1, 2, 3\}$.

(a) (5 points) Draw the transition graph associated to the matrix T.

(b) (5 points) How many allowable strings are there of length 6 which begin at 3 and end with 1? (For instance, 323211 is such an allowable string of length

6.)	/ Namely,	321111
4.		32/12/
		323211

(c) (10 points) Compute the number of periodic-n allowable sequences for the shift map on Σ_n^+ for $1 \le n \le 6$.

shift map on Z_g for $1 \le n \le 0$. Fixed $A = R_g = $				
n	#Fix on	14 Druns	# Period-n Sequences.	
		of lower period (sequences)	30/100/	
į		O		
			4	
2	5		2	
3	4		7	
			8	
4	13	5	U	
-	` /		15	
5	16		17	
6	38	9	20	
	20	8		

Page 5 of 7

- 4. Let $g:[0,1] \to [0,1]$ be the logistic map with parameter 2, g(x) = 2x(1-x). Recall that g has sensitive dependence on initial conditions at x_0 if there is an r > 0 such that, for any $\delta > 0$, there is a $y_0 \in [0,1]$ with $|x_0 - y_0| < \delta$ and an integer $k \ge 0$ such that $|g^k(x_0) - g^k(y_0)| \ge r$.
 - (a) (10 points) Show that for all $x \leq \frac{1}{4}$ we have $g(x) \geq \frac{3}{2}x$.

For
$$x \le \frac{1}{4}$$
, $1-x^{2} = \frac{3}{4}$.
So $g(x) \ge 2 \times (\frac{3}{4}) = \frac{3}{2} \times$.

(b) (10 points) Prove that g has sensitive dependence on initial conditions at $x_0 = 0$. (Hint: Use the definition and assume part (a).)

Let $r = \frac{1}{4}$. Given S, let $y_0 = \frac{1}{2}$. Then $|x_0 - y_0| = \frac{1}{2} < S$. We must show $\exists k$ such that $|g^k(y_0) - g^k(x_0)| \ge \frac{1}{4}$. Note: $g^k(x_0) = g^k(0) = 0$ since 0 is fixed. So $|g^k(y_0) - g^k(x_0)| = g^k(y_0)$. By contradiction, assume that $g^k(y_0) \le \frac{1}{4}$ for all K. Then $g^k(y_0) \ge {3 \choose 2}^k y_0 = {2 \choose 2}^k \frac{1}{4}$. Since $\lim_{k \to \infty} {3 \choose k}^k = +\infty$, we obtain $\lim_{k \to \infty} {3 \choose k}^k = +\infty$, we obtain a contradiction, to the assumption $g^k(y_0) \le \frac{1}{4}$ for all K. Thus $\exists \ k \ge 0$ such that $g^k(y_0) \ge \frac{1}{4}$.

5. Let
$$f:[0,3] \to [0,3]$$
 be given by $f(x) = \begin{cases} 3x & \text{if } 0 \le x \le 1\\ 5 - 2x & \text{if } 1 \le x \le 2\\ 2x - 3 & \text{if } 2 \le x \le 3. \end{cases}$

This function is graphed below.

Let $I_L = [0, 1], I_C = [1, 2], I_R = [2, 3].$

(a) (5 points) Draw the transition graph for f relative to the intervals above.

(b) (5 points) Is there a point $x \in [0,3]$ whose itinerary is $L(C)^{\infty}$? If so, find such a point. (Hint, you may want to find the point whose itinerary is C^{∞}

such a point. (Hint, you may want to find the point) whose itinerary is
$$C^{\infty}$$
 first.)

The point y whose itinerary is C^{∞} is fixed

The point y whose itinerary is C^{∞} is fixed

and lies in I_{C} . So $y = 5 - 2y$.

Thus $y = \frac{3}{3}$.

The point x lies in I_{L} and $f(x) = y$.

Therefore $3x = y$ and $x = 9$.

Hint: Though I have given you a lot of space, your answer to parts (c) and (d) should be brief. Either quote a theorem, or give a brief heuristic explanation of your answer.

(c) (5 points) Does f have sensitive dependence initial conditions on [0,3]? Why or why not?

ves, f is a piecewise expanding map on the interval [0,3]. So it has sdooc at every point in [0,3].

(d) (5 points) Is f topologically transitive on [0,3]? Why or why not?

No, the transition graph is irreducible,

Once an orbit lands in I_cuir} ,

it cannot return to I_L .