- 1. (15 points) For the following problems, circle the answer describing the stability of the fixed points in each question. You do not need to justify your answer.
 - (a) Consider the function $f(x) = \frac{\pi}{2\sqrt{2}}\sin(x)$.

The stability of the fixed point of f at x = 0 is best described as _

attracting repelling semistable neither

The stability of the fixed point of f at $x = \frac{\pi}{4}$ is best described as _____

attracting repelling semistable neither

(*Hint*: To two decimal places $\sqrt{2} = 1.41$ and $\pi = 3.14$.)

$$f'(x) = \frac{\pi}{2\sqrt{2}} \cos(x)$$

$$|f'(0)| = |\frac{\pi}{2\sqrt{2}}| \approx \frac{3.14}{2.82} > 1$$

$$|f'(\frac{\pi}{4})| = \frac{\pi}{2\sqrt{2}} (\frac{\sqrt{2}}{2}) = \frac{\pi}{4} < 1$$

(b) The function $h(x) = \frac{x}{1+x^2}$ has derivative $h'(x) = \frac{1-x^2}{(1+x^2)^2}$. The function h(x) is graphed with the diagonal below.

The function h(x) has a fixed point at x = 0 which is best described as

attracting repelling semistable neither

Apply triangle theorem.

Actually: B(O, L) = R!

2. (15 points)

Suppose that $f_{\mu}(x) = f(x,\mu)$ is a C^3 function $\mathbb{R}^2 \to \mathbb{R}$. In addition, suppose the family of functions f_{μ} has the following properties.

(A) $f_0(0) = 0$.

Hint: You may benefit by sketching the graph of f_{μ} for various values of μ .

(a) Which of the following bifurcations is occurring at $\mu = 0$ and x = 0? (Circle one.)

> tangential bifurcation period doubling bifurcation neither

(b) The stability of the fixed point $x_0 = 0$ of f_0 is best described as ____

repelling semistable neither

(see graph)

- (c) Which of the following statements is most likely to be true?
 - i. The points $x_+ = \sqrt{\mu}$ and $x_- = -\sqrt{\mu}$ are fixed points of $f_{\mu}(x)$ for values of μ satisfying $0 \le \mu < 1$.
 - ii. The points $x_+ = \sqrt{-\mu}$ and $x_- = -\sqrt{-\mu}$ are fixed points for values of μ satisfying $-1 \le \mu < 0$.
 - iii. The point x=0 is fixed for values of μ satisfying $-\frac{1}{2} < \mu < \frac{1}{2}$.

(see graph)

3. Consider the odd function $f_a(x) = x^3 - ax$ for values of a satisfying 0 < a < 1. The first 3 derivatives of f_a are given by

$$f'_a(x) = 3x^2 - a$$
, $f''_a(x) = 6x$, and $f'''_a(x) = 6$.

The fixed points of f are the points $x_0 = 0$ and $x_{\pm} = \pm \sqrt{a+1}$.

- (a) (5 points) Find the critical points of $f_a(x)$.
- (b) (10 points) Compute the Schwarzian derivative of $f_a(x)$. Show that the Schwarzian is negative except at the critical points.
- © Critical points are points where f'(x) = 0. $3x^2 - a = 0$ $3x^2 = a$ $x = \pm \sqrt{\frac{a}{3}}$ © $S_f(x) = \frac{f'(x)f'''(x) - \frac{3}{2}(f''(x))^2}{(f'(x))^2}$ $= \frac{6(3x^2 - a) - \frac{3}{2}(6x)^2}{(3x^2 - a)^2}$ $= \frac{-36x^2 - 6a}{(3x^2 - a)^2} = \frac{-6(6x^2 + a)}{(3x^2 - a)^2}$

So long as x is not a critical point, the denominator is merget positive. Also, the numerator is always negative, so $S_{\xi}(x)<0$.

- (c) (5 points) Prove that the points $x_{\pm} = \pm \sqrt{a+1}$ do not lie in the basin $\mathcal{B}(0, f_a)$. (Hint: You may wish to recall the definition of the basin $\mathcal{B}(0, f_a)$.
- (d) (10 points) Assuming you have successfully answered the previous two parts to this question, explain why a critical point must lie in $\mathcal{B}(0, f_a)$.

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\lim_{n \to \infty} |f^{n}(x_{\pm})| = \lim_{n \to \infty} |x_{\pm}| \neq 0.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

$$\mathcal{B}(0,f_{A}) = \begin{cases} x \in \mathbb{R} : \lim_{n \to \infty} |f^{n}(x)| = 0 \end{cases}.$$

(d) Note that |f'(0)| = |-a| = a < 1, so

O is an attracting fixed point. Also $S_{f}(x) < 0 \text{ except at critical points. So,}$ the Schwarzian basin theorem implies that either $(1) [0, \infty) \in \mathcal{B}(0, f_a)$,

either (1) $[0,\infty) \in \mathcal{B}(0,f_a)$,

(2) $(-\infty,0] \in \mathcal{B}(0,f_a)$, or

(3) There is a critical point in $\mathcal{B}(0,f_a)$.

But $\sqrt{a+1} \in [0,\infty)$ Metand $\sqrt{a+1} \notin \mathcal{B}(0,f_a)$ by (c)

so (1) can not hold.

Also $-\sqrt{a+1} \in (-\infty,0]$ and $-\sqrt{a+1} \notin \mathcal{B}(0,f_a)$ so

(2) can not hold

Thu (3) must be true.

4. (20 points) Let $h:[0,1] \to [0,1]$ be the continuous function defined by the following equation:

$$h(x) = \begin{cases} x + \frac{1}{2} & \text{if } 0 \le x \le \frac{1}{2} \\ 2 - 2x & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

(a) The graph of h(x) is shown below together with the graph of the diagonal. Graph $h^2(x)$ in the second box below.

(b) Let a_n denote the number of fixed points of $h^n(x)$ for integers $n \geq 1$. The numbers a_n are recursively given by the following:

$$a_1 = 1$$
, $a_2 = 3$ and $a_{n+2} = a_n + a_{n+1}$.

Use this information to compute the number of period-n points for values of $n \in \{1, 2, 3, 4, 5, 6\}$

$n \in$ $n \in$	$\# Fix(k^n)$ = a_n	# Points of lower period	# Points of period n.
	1	0	1
2	3		2
3	4	l	3
4	7	3	4
5	11	1	10
6	18	6	12

5. (20 points) Let $f(x) = x^2$. Note that f(x) has the following properties:

$$f(0) = 0$$
, $f(1) = 1$, $f'(0) = 0$, and $f'(1) = 2$.

Let g(y) = 2y(1-y). Note that g(y) has the following properties:

$$g(0) = 0$$
, $g(\frac{1}{2}) = \frac{1}{2}$, $g'(0) = 2$, and $g'(\frac{1}{2}) = 0$.

- (a) Find an affine conjugacy of the form y = C(x) = mx + b from f(x) to g(y).
- (b) Let $h(z) = 4z^2 + z$. Is there a differentiable conjugacy from f(x) to h(z)? If so, find the conjugacy. If not, explain why they are not differentiably conjugate.
- (a) A conjugacy must send fixed points to fixed points.

 A differentiable conjugacy must send a fixed point to
 a fixed point w/ the same decivative.

Therefore,
$$C(0) = \frac{1}{2} (= b)$$

 $C(1) = 0 (= m+b)$

So $b=\frac{1}{2}$ and $m=-\frac{1}{2}$. $C(X)=-\frac{1}{2}X+\frac{1}{2}$.

(5) Lets find the fixed points:

$$h(z) = Z$$

iff $4z^2 + z = 2$ => z = 0.

So h has only one fixed point.

But a conjugacy must preserve the number of fixed points. So f and h are not conjugate.