Directional derivatives of differentiable functions

Theorem 6.2: Let X C R"” be open and suppose that f : X — R is
differentiable at a € X. Then the directional derivative D,f(a) exists for
all directions (unit vectors) u € R"”. Moreover,

Duf(a) = Vf(a) - u.
Proof: Let h(x) be the linear approximation to f at a. Namely,
h(x) = Vf(a)-(x —a) + f(a).
By definition of differentiability, we know that
. f(x) = h(x) m f(x) — Vf(a) - (x—a)— f(a) _
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Let y = x —a. Then the above limit becomes
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Recall the definition of the directional derivative

Dyf(a) = t'[‘)‘o f(a+ tut) — f(a)'

The two equations are fairly similar. In fact, we can almost get the
directional derivative by restricting attention to the path y = tu. Then we
have ||y|| = ||tu|| = t when t > 0 and so from equation (1) we know that
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= Vf(a) - u.

Similar arguments work from the left, so we have D,f(a) = Vf(a) - u.




