Notes on §7.2-7.3: Vector surface integrals, Stokes’s
theorem, and Gauss’s theorem

7.2: Vector Surface Integrals (pp. 424)
This is a review of vector surface integrals. We will just consider the following example.

Example: Consider the vector field F(z, y, z) — xi+yj+2%k. Let S be the surface which is
the boundary of the region R = {(z,y,2) : £*+y* < z < 9}. Compute the flux of F across S.

Solution: The flux of F across S is the value of the integral
(*) = ﬂ F - dS.
s

Since S is a closed surface, we use the outward pointing normal vector to evaluate this
integral (unless otherwise mentioned). Here is a sketch to go along with this problem:

R
~ '1\ A .

E

S s a "}‘Jﬁfz!’wloi‘j
u’\""‘j A &[,16 K

Jeg \"’\g

Step 1: Parameterize the surface. We choose to parameterize this surface using cylin-
derical coordinates, because the region looks nicest in these coordinates. We use two pieces.
X; will parameterize the parabolic base and X, will parameterize the planar top.

Xi(r,0) = (rcos@,rsind, fr’Q) where 0 <r <3 and 0 <0 < 2.

Xao(r,0) = (rcosf,rsind,9) where 0 <r <3 and 0 < 0 < 27.

Step 2: Compute the outward pointing standard normal vectors. We will first do
the X, piece. We first compute the standard tangent vectors for X;.
0 :
T e gxl = (cos0,sin 0, 2r) T¢ = 2X, = (—rsinf,rcosd,0)
The standard normal vector N is either £T, x Ty (with the sign determined so that the
normal vector points outward). We compute

T, x Ty = (~2r* cosf, —2r?sinf, r)
This is the wrong sign (because the outward pointing vector should point in the downward
direction, but the z coordinate of T, x Ty is always positive). So, our standard normal

vector is
N = —T, x Ty = (2r¥cosf, 2r*sin 0, —r).



Now we will look at the X piece. We compute the tangent vectors, and their cross
product.

a
T, = EXQ = (cos#,sin 6, 0) Ty = £X, = (—rsind, rcosf,0)
T, ¢ B (0, D) Me="E, & Tg = (0,0,%]
(We chose N = T, x Ty rather than N = —T, x Ty, so that the normal vector points

upward, away from the region.)
Step 3: Evaluate the integral. The flux of I through S is

()= [[F-as— [[F-ds+ [[Fas.
s X4 Xz

We begin by evaluating the integral over X;.

P8 = [ RO 0) N d df
N foz(’f’cosé’, rsinf,r*) - (2r?cosd, 2r?sind, —r) dr do
= f()% fo 2r3 — 5 dr df

Now we evaluate the integral over X.

[, F-dS = [ JoB(Xy(r,0)) - N dr df
= o:% f(f(cr' cosf,rsinfd, 81)-(0,0,r) dr df
= [ [281r df
= 2n[&r?)7=8 = 7297

So, the total flux of F' through S is

()= [[Fras=[[F-as+ [[F.ds - s567r
s X X2



7.3: Stokes’s theorem (pp. 439)

Stokes’s theorem is a generalization of Green's theorem to surfaces in 3-dimensional space.
(Green’s theorem can be derived from Stokes’s theorem by considering the surface to be a
subset of the plane.)

Theorem 1 (Stoke’s theorem) Let S be a bounded, piecewise smooth, oriented surface
in R®. Suppose that 88 consists of finitely many piecewise C, simple, closed curves each
of which is orienled consistently with S. Let F be a veclor field of class C* whose domain
includes S. Then
f vXF-dszjﬁ F . ds.
2 Jas
Oriented consistently has a similar meaning as in Green’s theorem. The choice of a normal
of the surface tells which side of the surface is “up.” As you walk around the boundary of
the surface (standing with your head in the “up” direction), the surface should be on your
left.
This theorem is useful to simplify many sorts of problems. Here are some types of
problems you might see. (You may see others too.)

1. Problem: Suppose C' is a simple closed curve (or collection of simple closed curves).
Compute the integral ¢, F - ds.
Possible solutions:
(a) Direct evaluation. (This is a good method unless F looks too complicated.)
(b) Find an oriented surface S such that 95 = C counting orientation. Then by

Stokes’s theorem,
Fds— [[VxF ds
AR

This works particularly well if V x F is much simpler than F and S is a relatively
simple surface.

2. Problem: Compute the integral [[(V x F - dS.
Possible solutions:

(a) Direct evaluation. (Probably not the best method especially if S looks compli-
cated.)

(b) Direct evaluation of the other side of Stokes’s theorem, ¢, F - ds. (This is good
if the boundary is not too complicated and F is not too complicated.)

(¢) BEvaluate [[, V x F.dS, where S’ is another surface with the same boundary
with the same boundary orientation. This works hecause of two applications of
Stokes’s theorem.

ijVxF-dS:jigsF-ds:jéyF-ds:‘ngF-dS.



Example problem: Let F(z,y,z) = (6, z+ 2,sin z*) and x(t) = (cost,sint, cost+2sint).
Compute ¢_F - ds.
Solution: Here is a sketch to go along with this problem:

7 ?/4}1&
z25 )('4-22
4 s +he be‘%bx C&L

i +hi ?)Ané, Ih weé ><
A big clue is that e* is very dlﬁicult to integrate. We compute the curl of F,

VxF=(-1,0,1).

The curl of I is much simpler, so it would be advantageous to use Stokes’s thcorem. We
need to find a surface with this boundary. Note that x lies in the plane z = z + 2y. Our
surface S is the portion of the plane z = z -+ 2y inside the curve x with upward pointing

normals. Then
j;fF-ds:J V x F.dS.
C

So, we just need to evaluate this surface integral. We can parameterize S by using cylinderical

coordinates.
X(r,0) = (rcosf,rsind,r(cosf + 2sin d)).

We compute

6 %X = (cosf,sinf,cosf + 2sin ) Ty = %X = (—rsinf,rcosf, r(2cos — sind))
T, x Ty = (—r,—2r,7) N =T, x Ty = (—r,—2r,7)

We can now evaluate.

[[VxE-dS = [ .V x F(X(r,0)-N dr df
— [T =1,0,1) - (=7, —2r,7) dr df
= [T [ 2r dr dO = 21

Example problem: Let F(z,y, z) = (; sin(z’y*)+ z®, < sin(z*y*), 32%) and S be the surface
cosz = /2% + 32 with 2> +y* < 1 and 0 < z < % oriented upward. Evaluate [[, V x F-dS.



Solution: Here is a sketch to go along with this problem:
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th the plane z=C.

The boundary of the surface S is the circle C given by 2% + y? = 1 and z = 0 oriented
counterclockwise. Thus, by Stokes’s theorem.

J&IVXF-dS:jiF-dS.

However, this is not easy to evaluate either, because integrating F seems difficult. Let S be
the unit disk in the plane z = 0 with upward pointing normals. Then 95’ = C'. Then, by a
second application of Stokes’s theorem, we have

jéF-ds:lIVxF-dS.

We can parameterize S’ using cylinderical coordinates.
X(r,8) = (rcosf,rsinf,0) with 0 <O <2rand 0 < r < 1.

Then the standard upward pointing normal is N = (0,0,r). We compute V x F =
(0, —6z, —3z?). Thus,

[lo VxF-dS = j(;ﬂ (0, =67 cos 0, —3r% cos? 0) - (0,0, 7) dr df
= [4" 3¢ cos? 0 dr df
Jo_Jo
= [T St cos? 0 db

-3 2411‘ 14cos 26 de =3
— 4 Jo 2 T4



7.3: (Gauss’s theorem (pp. 442)

Recall that if F is a vector field determining the velocity of particles (perhaps in a fluid),
then the divergence V - F measures the expansion or contraction of that fluid in time. The
expansion of the fluid in a fixed region K would mean that the some of the fluid would have
to leave the region R through the boundary. Thus, we expect thal positive divergence on a
region R should indicate particles are leaving through the boundary of the region R. Using
more mathematical terminology, positive divergence on R indicates positive flux through the
houndary @R when oriented with outward pointing normals. Gauss’s theorem gives a much
more precise description of the relationship between divergence in a region R and the flux
through its boundary.

Theorem 2 (Gauss’s theorem) Let D be a bounded solid region in R whose boundary
0D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is
oriented by unit normals that poinl away from D. Lel F be a vector field of class C* whose

domain includes D. Then
fﬁF-dS:fﬂv-F dv.
abD D

Generally (but not always), the right side of this equation is the easiest to evaluate.
Triple integrals gencrally require less work than vector surface integrals. Also, V - F is often
much simpler than F.

Here are two types of problems you might see. (You may see others too.)

1. Problem: Suppose § is a oriented closed surface (or collection of such surfaces).
Compute the integral {f. F - dS.
Possible solutions:

(a) Direct evaluation. (This is probably not best unless the integral looks particularly
simple.)

(b) Find a region D C R* such that 8D = S. (Keep track of orientation, because
the opposite orientation will introduce a minus sign into your calculations.) Then
evaluate the right hand side of Gauss’s theorem, [[[,V -F dV.

2. Problem: Suppose S is a oriented surface which is not closed. Compute the integral
JJ,F - dS.
Possible solutions:

(a) Direct evaluation. (This is probably best unless the integral seems difficult.)

(b) Find a region D C R® such that the boundary 8D has S as one of its boundary
components. Let S be the remaining part of 8D oriented outward. We should
choose D so that S’ is as simple as possible. Then Gauss’s theorem reads

@F-dS+@§F-dS:fﬂV-FdV
S St D



(Assuming S is oriented with outward pointing normals. Otherwise introduce a
minus sign in front of the integral over S.) Solving for the integral over S we get

@F-dszm’v-wv—@rds_
g D 5

Now evaluate the right hand side.

Example problem: (Repeat of the example on the first page) Consider the vector field
F(z,y,2) — zi +yj + 2°k. Let S be the surface which is the boundary of the region
R={(z,y,2) : 2 +%° < 2z < 9}. Compute the flux of F across S.

Solution: We now use Gauss’s theorem. The flux of F across S is the value of the integral

fF-ds.
g

By Gauss’s theorem, this is the same as evaluating

J]"V-de.
R

We compute V - F = 2 4+ 22, Now we parameterize our region in cylinderical coordinates,
hecause the region looks nicer in this way. R is determined in cylinderical coordinates by
the inequalities

0€6<2r 0<7r<3 r*<2<9,
In cylinderical coordinates dV = r dz dr df. Thus, the triple integral can be rewritten as

[Zﬂfof (24 2z)r dz dr df "27?] 7"[23+ZJZ9 dr

z=r2

%

*{)ﬂ’f% (99 — 2r* —7“4) dr
= Q?Tf 99T —2r® — ¢ dr
=2m[Hrt — Lt — %rﬁ}ifg

= 7r(891 — 81 — 243) = 567x

This agrees with our answer from before, but was quite a bit easier.

Example problem: Let S be the top half of the unit sphere in R? oriented with upward
pointing normal vectors. Let F(z,y,2) = (e¥°, 0,222 4+ 42z + 12°). Compute the flux of F
through S.

Solution: Ilere is a sketch for this probl m:

We are asked to compute [[F-dS. But, this looks difficult, because of the ¥’ in F.
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Instead, let
D = {(z,y, #) such that z* + y* + 2* < 1 and z > 0}.

Then by Gauss’s theorem,

ﬂ.F.dS 'f;rgv‘pdv_grfl;‘_ds,

S

where S’ is the remaining boundary component of @0 with outward pointed normals. That
is, D is the unit disk in the plane z = 0 with downward pointed normals.

Let us evaluate the triple integral first. We have that V- F = 2% + 4% + z2. It seems wise
to use spherical coordinates. We can parameterize the region D in spherical coordinates by
m

0<f<2r 0<p<] 05@52

In spherical coordinates dV = p?sin ¢ d¢ dp df. We evaluate the integral.

=

WoV-Bdv — " Jy [y (0")o* sind do dp dO
= 2 [y p— cosglyg dp

=2 [y p* dp =230 =

S1EY

Now, we have to evaluate the surface integral over S’. We parameterize S’ with cylinderical
coordinates.

X(r,0) = (rcosf,rsind,0) where 0 <r < 1land 0 <8 < 2.

Now we compute the standard normal vector.

0 )
T, = 5?:}( — (cos ,sin 0, 0) Te = X = (—rsinf,rcosd,0)

T, x Ty = (0,0,7) N = —T, x Ty = (0,0,—1)

We chose N = —T, x Ty rather than N = T.. x T so that the surface is oriented downward
as required. Then we can evaluate the integral over 5.

JF-dS = [ [ F(X(r,0)- N dr do
HG 01 A
- foﬂfo (er“sm 0’0’ 0) 4 (0?0} WT) dr db
= [Z [ 0drdf=0

By Gauss’s theorem, we know the integral over S.

J]'F-dS:fij-FdV—_[IF-ds2;—0-—%”
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