M.E.N.U. Linear algebra: Practice Midterm II

November 2007

1. Complete the following definitions:
(a) "A function $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation if..."
(b) "Let H be a subspace of \mathbf{R}^{n}. A collection of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ in H is a basis for H if..."
(c) "The null space of an $m \times n$ matrix A is defined:

$$
\operatorname{Nul}(A)=\ldots "
$$

(d) "The column space of an $m \times n$ matrix A is defined:

$$
\operatorname{Col}(A)=\ldots "
$$

2. Let S and T be linear transformations of \mathbf{R}^{2} into itself such that

$$
S\binom{2}{1}=\binom{1}{1}, \quad S\binom{1}{2}=\binom{0}{4}
$$

and

$$
T\binom{1}{0}=\binom{1}{2}, \quad T\binom{0}{1}=\binom{2}{1} .
$$

(a) Find the standard matrix for T.
(b) Find the standard matrix for the composition $S \circ T$, where $S \circ T(\mathbf{x})=S(T(\mathbf{x}))$.
3. Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & 3 \\
-2 & -4 & 4
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Col}(A)$.
(b) Find a basis for $\operatorname{Nul}(A)$.
(c) Is A invertible? Justify your answer.
4. Let

$$
A=\left(\begin{array}{cc}
1 & 0 \\
2 & -3 \\
1 & 2
\end{array}\right)
$$

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be the linear transformation given by the formula $T(\mathbf{x})=A \mathbf{x}$.
(a) Let $\mathbf{b}=\left(\begin{array}{c}5 \\ -2 \\ 13\end{array}\right)$. Does there exist a vector \mathbf{v} in \mathbf{R}^{2} such that $T(\mathbf{v})=\mathbf{b}$? If so, find such a vector, if not, explain why such a vector does not exist.
(b) Is T one-one? Onto? Justify your answers.
5. Is there a linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ with the properties:

$$
T(1,0)=(2,-1,0), \quad T(0,1)=(1,1,3), \quad T(1,-1)=(1,-2,-1) ?
$$

If so, give a formula for T. If not, explain why such a T cannot exist.
6. Consider two 2×2 matrices, A and B. Suppose that

$$
B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad \text { and } \quad(A B)^{-1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

Find A^{-1}. Justify the steps in your calculation.

