1. Do the following limits exist? If they do exist, find the limit. If they do not, explain why they do not.

$$=\lim_{(x,y)\to(0,0)}\frac{|xy|}{|x|+|y|}$$

$$=\lim_{(x,y)\to(0,0)}\frac{r^2|\cos\theta\sin\theta|}{r(|\cos\theta|+|\sin\theta|)}=\lim_{(x,y)\to(0,0)}\frac{r|\cos\theta\sin\theta|}{|\cos\theta|+|\sin\theta|}=\bigcup_{|\cos\theta|+|\sin\theta|}$$
because $\alpha=\frac{|\cos\theta\sin\theta|}{|\cos\theta|+|\sin\theta|}$ is bounded independent from θ .

Note: $\frac{1}{\alpha}=\frac{1}{|\sin\theta|}+\frac{1}{|\cos\theta|}$ so $\frac{1}{\alpha}\geq 2$ thus $\alpha\leq\frac{1}{\alpha}$.

$$\lim_{(x,y)\to(0,0)} \frac{(x-y)^4}{(x+y)^4}$$

Consider path
$$x(t)=t$$
 $y(t)=0$

$$\lim_{t\to 0} \frac{(t-0)^{t}}{t^{t}}=1$$

Now consider gath x(t)=t y(t)=t

$$\lim_{t \to 0} \frac{(t-t)^4}{(t+t)^4} = \lim_{t \to 0} \frac{0}{(2t)^4} = 0.$$

2. The function z(x,y) is defined implicitly by the equation

- (a) (10 points) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by implicit differentiation.
- (b) (10 points) Find an equation for the tangent plane to z(x,y) at the point $(\frac{\pi}{2}, 1, 0)$.

a)
$$F_x = cos(x+z)$$

 $F_y = -e^z$
 $F_z = cos(x+z) - ye^z$
So $\frac{\partial z}{\partial x} = \frac{-F_x}{F_z} = \frac{-cos(x+z)}{cos(x+z) - ye^z}$

$$\frac{\partial Z}{\partial y} = \frac{+e^{Z}}{\cos(x+Z) - ye^{Z}}$$

b)
$$\frac{\partial^2}{\partial x}(\Xi_{1,0}) = 0$$

 $\frac{\partial^2}{\partial y}(\Xi_{1,0}) = -1$

$$20 = 32(x-\frac{\pi}{2}) + 32(y-1) + 40$$

$$2 = 1-y$$

3. The position of a pigeon at time t is given by

$$\mathbf{r}(t) = \langle \cos t, \sin t, \frac{1}{3}(2+t^2)^{\frac{3}{2}} \rangle$$

The pigeon's velocity and acceleration are given by

$$\mathbf{v}(t) = \langle -\sin t, \cos t, t\sqrt{2+t^2} \rangle$$
 and $\mathbf{a}(t) = \langle -\cos t, -\sin t, \frac{2+2t^2}{\sqrt{2+t^2}} \rangle$

- (a) (5 points) Find the speed of the pigeon at time t.
- (b) (5 points) Find the tangential component of acceleration of the pigeon at time t
- (c) (5 points) Find the curvature of $\mathbf{r}(t)$ at time t = 0.
- (d) (5 points) Find the normal component of acceleration of the pigeon at time t = 0.

a) speed =
$$||v(t)|| = \sqrt{\sin^2 t + \cos^2 t + t^2(2+t^2)}$$

$$\frac{ds}{dt} = \sqrt{1 + 2t^2 + t^4} = \sqrt{(1+t^2)^2}$$

$$\frac{ds}{dt} = \boxed{1 + t^2} \quad \text{since} \quad 1 + t^2 > 0.$$
b) $a_T = \frac{d}{dt} \left[\frac{ds}{dt} \right] = \frac{d}{dt} \left[1 + t^2 \right] = \boxed{2t.}$
c) $\mathcal{K} = \frac{||r' \times r''||}{||r'||^3} = \frac{||MM|}{||\langle 0, 1, 0 \rangle \times \langle -1, 0, \sqrt{2} \rangle||}$

$$\mathcal{K} = \frac{\sqrt{3}}{1} = \boxed{\sqrt{3}}$$

$$||\vec{a}(0)|| = ||\langle -1, 0, \sqrt{2} \rangle|| = \sqrt{3}$$

 $a_N = \sqrt{\|\vec{a}(0)\|^2 - a_T^2} = \sqrt{(\sqrt{3})^2 - 0}$

4. Consider the surface S described parametrically by the following equations

$$x(t, u) = e^{t^2 + u} \cos t$$
 $y(t, u) = e^{t^2 + u} \sin t$ $z(t, u) = t^2 + u$

- (a) (5 points) Find a plane containing the points (x(0, u), y(0, u), z(0, u)) for all u.
- (b) (5 points) Find an equation for the intersection between S and the plane z=0. Describe this intersection in words.
- (c) (5 points) Do the same for the intersection between S and the plane z = k for all real numbers k.
- (d) (5 points) Using cylindrical coordinates, find a new parametric representation for S.

a)
$$\chi(0,u) = e^{u}$$
 $y(0,u) = 0$ $2(0,u) = u$.
Plane is $y = 0$

b) if
$$z=0$$
 then $t^2+u=0$ so $u=-t^2$.
 $x(t,-t^2)=c^0\cos t=\cos(t)$
 $y(t,-t^2)=e^0\sin t=\sin(t)$

So
$$x(t) = \cos t$$

 $y(t) = \sin t$
 $z(t) = 0$

is a parametric equation for the intersection, which is the unit circle inthe xy-plane.

$$(x)$$
 (x) (x)

d)
$$x(z,\theta) = e^{z} \cos \theta$$

 $y(z,\theta) = e^{z} \sin \theta$
 $z(z,\theta) = Z$

5. Suppose that a penguin is climbing an iceberg. The iceberg can be described by graphing the differentiable function f(x, y). At time t the position of the penguin is given by

$$\mathbf{r}(t) = \langle x(t), y(t), f(x(t), y(t)) \rangle$$

Suppose that the tangent plane to f(x,y) at the point where the penguin is standing at time t=1 is given by the formula

$$2x - 3y - z = 15$$

Suppose also that $\frac{dx}{dt}(1) = 2$ and $\frac{dy}{dt}(1) = \pi$.

- (a) (10 points) What are $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (x(1), y(1))?
- (b) (10 points) What is $\frac{df}{dt}$ at time t = 1? Is the altitude of the penguin increasing or decreasing?

a) The tangent plane at this point is

$$Z = 2x - 3y - 15$$
So of course this is the same as

$$Z = f_{x}(x(0), y(0))(x-a) + f_{y}(x(0), y(0))(y-b) + f(x(0), y(0))$$
where are an expected as $x = x(1) = y(1)$
So $f_{x}(x(1), y(1)) = 2$

$$f_{y}(x(0), y(1)) = -3$$
b)
$$df = \frac{2f}{2x} \frac{2x}{1t} + \frac{2f}{2y} \frac{dy}{dt}$$

$$df(0) = 2(2) + (-3)\pi = 4 - 3\pi$$
Since $4 - 3\pi < 0$, the penguin's altitude is decreasing.