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1. Do the following limits exist? If they do exist, find the limit. If they do not,
explain why they do not.

(a) (10 points)
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2. The function z(z,y) is defined implicitly by the equation
- = sin(z + 2) —ye* =0

(a) (10 points) Find % and g’f} by implicit differentiation.
(b) (10 points) Find an equation for the tangent plane to z(z,y) at the point
(3,1,0).
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3. The position of a pigeon at time ¢ is given by

l@+¢%%

r(t) = (cost,sint, 3

The pigeon’s velocity and acceleration are given by

2+ 2t°
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(a) (5 points) Find the speed of the pigeon at time ¢.

(b) (5 points) Find the tangential component of acceleration of the pigeon at time
t.

(c) (5 points) Find the curvature of r(¢) at time ¢ = 0.

(d) (5 points) Find the normal component of acceleration of the pigeon at time
t=0.
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4. Consider the surface S described parametrically by the following equations
ot u) = e Teost  y(t,u) = e tUsint z(t,u) =12+ u

(a) (5 points) Find a plane containing the points (x(O,u),y(O, u), z(O,u)) for all
u.

(b) (5 points) Find an equation for the intersection between S and the plane
z = 0. Describe this intersection in words.

(¢) (5 points) Do the same for the intersection between S and the plane 2z = k
for all real numbers k.

(d) (& points) Using cylindrical coordinates, find a new parametric representation
for S.
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5. Suppose that a penguin is climbing an iceberg. The iceberg can be described by
graphing the differentiable function f(z,y). At time ¢ the position of the penguin
is given by

r(t) = (z(t), y(t), f(=(t),y(t)))

Suppose that the tangent plane to f(x,y) at the point where the penguin is stand-
ing at time ¢t = 1 is given by the formula

2z — 3y —z =15
Suppose also that % (1) = 2 and %(1) = 7.

(a) (10 points) What are af and —i at the point (x(1),y(1))?

(b) (10 points) What is ?1% at time ¢t = 17 Is the altitude of the penguin increasing
or decreasing?
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