Partial Derivatives

We define F to be a function of two variables whose graph lies on the unit sphere:

In[29]:=

F[x_, y_] := Sqrt[1 - x^2 - y^2]

In[30]:=

F[x, y]

Out[30]=

(1 - x^2 - y^2)^(1/2)

Here are its partial derivatives

In[2]:=

D[F[x, y], x] D[F[x, y], y]

Out[2]=

-x/(1 - x^2 - y^2)^(1/2)

Out[3]=

-y/(1 - x^2 - y^2)^(1/2)

We define functions representing its partial derivatives:

In[4]:=

Fx[x_, y_] := -x/(1 - x^2 - y^2)^(1/2) Fy[x_, y_] := -y/(1 - x^2 - y^2)^(1/2)

Here is the graph:

In[31]:=

p1 = Plot3D[F[x, y], {x, -Sqrt[2]/2, Sqrt[2]/2}, {y, -Sqrt[2]/2, Sqrt[2]/2}, AspectRatioAutomatic]

[Graphics:HTMLFiles/index_9.gif]

Out[31]=

⁃SurfaceGraphics⁃

(This is code to draw the tangent vectors obtained from the partial derivatives)

In[15]:=

lx[x_, y_] := Graphics3D[{RGBColor[1, 0, 0], Thickness[.01], Line[{{x, y, F[x, y]}, {x, y, F[x ... GBColor[0, 1, 0], Thickness[.01], Line[{{x, y, F[x, y]}, {x, y, F[x, y]} + {0, 1, Fy[x, y]}/2}]}]

In[23]:=

TangentVector[x_, y_] := {p1, lx[x, y], ly[x, y]}

This shows the tangent vectors <1,0,Fx[x,y]> in red and <0,1,Fy[x,y]> based at the point (x,y)=(0,0)

In[32]:=

Show[TangentVector[0, 0]]

[Graphics:HTMLFiles/index_14.gif]

Out[32]=

⁃Graphics3D⁃

at (x, y)=(0.4, 0)

In[34]:=

Show[TangentVector[.4, 0]]

[Graphics:HTMLFiles/index_17.gif]

Out[34]=

⁃Graphics3D⁃

At (x, y)=(0.5, 0.5)

In[36]:=

Show[TangentVector[.5, .5], ViewPoint {2, -.5, .5}]

[Graphics:HTMLFiles/index_20.gif]

Out[36]=

⁃Graphics3D⁃


Created by Mathematica  (September 27, 2004)