An example- to aid in thinking about Implicit Differentiation

F[x, y, z]=0 determines a surface in space. In this case it contains the solutions to the equation y/x=Tan(z)

In[9]:=

F[{x_, y_, z_}] := x Sin[z] - y Cos[z]

In[10]:=

F[{x, y, z}]

Out[10]=

-y Cos[z] + x Sin[z]

We can parameterize this surface as follows:

In[11]:=

P[t_, z_] := {t * Cos[z], t * Sin[z], z}

Then, we see the image of P is sent to zero by F

In[12]:=

F[P[t, z]]

Out[12]=

0

In[13]:=

ParametricPlot3D[P[t, z], {t, -2, 2}, {z, -Pi, Pi}, AspectRatioAutomatic]

[Graphics:HTMLFiles/index_8.gif]

Out[13]=

⁃Graphics3D⁃

We can compute the partial derivatives of F with respect to x and y and z

In[14]:=

Fx = D[F[{x, y, z}], x] Fy = D[F[{x, y, z}], y] Fz = D[F[{x, y, z}], z]

Out[14]=

Sin[z]

Out[15]=

-Cos[z]

Out[16]=

x Cos[z] + y Sin[z]

Using implicit differentiation we determine the partials dz/dx and dz/dy

In[17]:=

dzdx = -Fx/Fz dzdy = -Fy/Fz

Out[17]=

-Sin[z]/(x Cos[z] + y Sin[z])

General :: spell1 : Possible spelling error: new symbol name \"dzdy\" is similar to existing symbol \"dzdx\".  More…

Out[18]=

Cos[z]/(x Cos[z] + y Sin[z])

In[19]:=

dzdx2[x_, y_, z_] := -Sin[z]/(x Cos[z] + y Sin[z]) dzdy2[x_, y_, z_] := Cos[z]/(x Cos[z] + y Sin[z])

General :: spell1 : Possible spelling error: new symbol name \"dzdy2\" is similar to existing symbol \"dzdx2\".  More…

Note, those equations were not defined on the line x=y=0 which lies on our surface F[x,y,z]=0

In[22]:=

F[{0, 0, z}]

Out[22]=

0

We can use the partials to compute the equation of the tangent plane at the point (x,y,z)

In[23]:=

T[x_, y_, z_][a_, b_] := z + (a - x) dzdx2[x, y, z] + (b - y) dzdy2[x, y, z]

Here is our surface again

In[24]:=

g1 = ParametricPlot3D[P[t, z], {t, -2, 2}, {z, -Pi, Pi}, AspectRatioAutomatic]

[Graphics:HTMLFiles/index_24.gif]

Out[24]=

⁃Graphics3D⁃

Here is the tangent plane at the point (1,0,0)

In[25]:=

g2 = Plot3D[T[1, 0, 0][a, b], {a, -2, 2}, {b, -2, 2}]

[Graphics:HTMLFiles/index_27.gif]

Out[25]=

⁃SurfaceGraphics⁃

In[26]:=

Show[{g1, g2}]

[Graphics:HTMLFiles/index_30.gif]

Out[26]=

⁃Graphics3D⁃

Let's see what happens to the tangent plane at (x,0,0) as x->0. (Note the partials at (0,0,0) were not defined))

In[27]:=

tanplane[n_] := Plot3D[T[n, 0, 0][a, b], {a, -2, 2}, {b, -2, 2}]

In[31]:=

tab = Table[tanplane[2/i], {i, 1, 10}]

General :: spell1 : Possible spelling error: new symbol name \"tab\" is similar to existing symbol \"Tab\".  More…

[Graphics:HTMLFiles/index_35.gif]

[Graphics:HTMLFiles/index_36.gif]

[Graphics:HTMLFiles/index_37.gif]

[Graphics:HTMLFiles/index_38.gif]

[Graphics:HTMLFiles/index_39.gif]

[Graphics:HTMLFiles/index_40.gif]

[Graphics:HTMLFiles/index_41.gif]

[Graphics:HTMLFiles/index_42.gif]

[Graphics:HTMLFiles/index_43.gif]

[Graphics:HTMLFiles/index_44.gif]

Out[31]=

{⁃SurfaceGraphics⁃, ⁃SurfaceGraphics⁃, ⁃SurfaceGraphics⁃,  ... 259;, ⁃SurfaceGraphics⁃, ⁃SurfaceGraphics⁃, ⁃SurfaceGraphics⁃}

In[33]:=

For[i = 1, i<10, i ++, Show[g1, tab[[i]]]]

[Graphics:HTMLFiles/index_47.gif]

[Graphics:HTMLFiles/index_48.gif]

[Graphics:HTMLFiles/index_49.gif]

[Graphics:HTMLFiles/index_50.gif]

[Graphics:HTMLFiles/index_51.gif]

[Graphics:HTMLFiles/index_52.gif]

[Graphics:HTMLFiles/index_53.gif]

[Graphics:HTMLFiles/index_54.gif]

[Graphics:HTMLFiles/index_55.gif]

As (x,0,0)->(0,0,0) the planes become closer and closer to vertical! Think about why these partial derivatives of a vertical plane are not well defined


Created by Mathematica  (October 5, 2004)