Source code for geometry.translation

from sage.matrix.constructor import matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.groups.group import Group
from sage.categories.groups import Groups
from sage.structure.element import MultiplicativeGroupElement
from sage.modules.free_module import VectorSpace
from sage.modules.free_module_element import vector
from sage.structure.unique_representation import UniqueRepresentation

from sage.rings.integer import Integer


ZZ_0 = Integer(0)
ZZ_1 = Integer(1)
ZZ_2 = Integer(2)
ZZ_3 = Integer(3)
ZZ_4 = Integer(4)


[docs]class Translation(MultiplicativeGroupElement): r"""Class for a translation of the plane. This is an element of a group written multiplicatively (for composition, and compatibility with Similarity).""" def __init__(self, parent, s, t): r'''Construct the similarity (x,y) mapsto (ax-by+s,bx+ay+t).''' if parent is None: raise ValueError("The parent must be provided") self._s=s self._t=t self._parent=parent MultiplicativeGroupElement.__init__(self,parent) def _mul_(self,s): r'''Compose two similarities.''' C = self.__class__ return C(self._parent, s._s+self._s, s._t+self._t) def __invert__(self): r'''Invert a similarity.''' C = self.__class__ return C(self._parent, -self._s, -self._t) def _div_(self,s): return self._mul_(s.__invert__()) def __hash__(self): return 13*hash(self._s)+53*hash(self._t) def __call__(self,w): r'''Return the image of a vector w under the translation.''' return vector([ self._s+w[0], self._t+w[1] ]) def _repr_(self): return "Translation by ("+str(self._s)+", "+str(self._t)+")" def _cmp_(self, other): x=cmp(self._s,other._s) if x!=0: return x return cmp(self._t,other._t) __cmp__=_cmp_
[docs] def matrix(self): return matrix(self._parent._f,[ [self._parent._f.one(), self._parent._f.zero(), self._s], [self._parent._f.zero(), self._parent._f.one(), self._t], [self._parent._f.zero(), self._parent._f.zero(), self._parent._f.one()]])
[docs] def s(self): return self._s
[docs] def t(self): return self._t
[docs]class TranslationGroup(UniqueRepresentation,Group): r'''Group representing translations in the plane with a multiplicative group operation. ''' Element = Translation def _element_constructor_(self, *args, **kwds): if len(args)!=1: return self.element_class(self, *args, **kwds) x = args[0] return self.element_class(self, x, **kwds) def __init__(self, base_field): self._f=base_field # The vector space of vectors self._vs = VectorSpace(self._f,2) Group.__init__(self, category=Groups().Infinite()) def _repr_(self): return "TranslationGroup over field "+str(self._f) def one(self): return self.element_class(self,self._f.zero(),self._f.zero()) def an_element(self): return self.element_class(self,self._f(ZZ_3),self._f(ZZ_4)) def is_abelian(self): return True def gens(self): return [ self.element_class(self._f.one(),self._f.zero()), self.element_class(self._f.zero(),self._f.one()) ] def base_field(self): return self._f