Source code for geometry.similarity

from sage.matrix.constructor import matrix
from sage.matrix.matrix_space import MatrixSpace
from sage.groups.group import Group
from sage.categories.groups import Groups
from sage.structure.element import MultiplicativeGroupElement, parent
from sage.modules.free_module import VectorSpace
from sage.modules.free_module_element import vector
from sage.structure.unique_representation import UniqueRepresentation
from sage.rings.integer import Integer

from sage.categories.fields import Fields
_Fields = Fields()

from geometry.translation import TranslationGroup

ZZ_0 = Integer(0)
ZZ_1 = Integer(1)
ZZ_2 = Integer(2)
ZZ_3 = Integer(3)
ZZ_4 = Integer(4)


[docs]class Similarity(MultiplicativeGroupElement): r"""Class for a similarity of the plane.""" def __init__(self, parent, a, b, s, t): r'''Construct the similarity (x,y) mapsto (ax-by+s,bx+ay+t).''' if parent is None: raise ValueError("The parent must be provided") self._a=a self._b=b self._s=s self._t=t self._parent=parent MultiplicativeGroupElement.__init__(self,parent) def _mul_(self,s): r'''Compose two similarities.''' C = self.__class__ return C(self._parent, self._a*s._a-self._b*s._b, self._b*s._a+self._a*s._b, self._a*s._s-self._b*s._t+self._s, self._b*s._s+self._a*s._t+self._t) def __invert__(self): r'''Invert a similarity.''' det=self._a*self._a+self._b*self._b a=self._a/det b=-self._b/det C = self.__class__ return C(self._parent, a, b, -a*self._s+b*self._t, -b*self._s-a*self._t) def _div_(self,s): return self._mul_(s.__invert__()) def __hash__(self): return 73*hash(self._a)-19*hash(self._b)+13*hash(self._s)+53*hash(self._t) def __call__(self,w): r'''Return m*w+v.''' return vector([self._a*w[0]-self._b*w[1]+self._s, self._b*w[0]+self._a*w[1]+self._t]) def _repr_(self): return "Similarity (x,y) mapsto ("+str(self._a)+"*x-"+\ str(self._b)+"*y+"+str(self._s)+", "+\ str(self._b)+"*x+"+str(self._a)+"*y+"+str(self._t)+")" def _cmp_(self, other): x=cmp(self._a,other._a) if x!=0: return x x=cmp(self._b,other._b) if x!=0: return x x=cmp(self._s,other._s) if x!=0: return x return cmp(self._t,other._t) __cmp__=_cmp_ # For pickling: #def __reduce__(self): # return self.__class__, (self._parent, self._a, self._b, self._s, self._t) def matrix(self): return matrix(self._parent._f,[ [self._a, -self._b, self._s], [self._b, self._a, self._t], [self._parent._f.zero(), self._parent._f.zero(), self._parent._f.one()]]) def a(self): return self._a def b(self): return self._b def s(self): return self._s def t(self): return self._t
[docs] def derivative(self): r"""Return the 2x2 matrix corresponding to the derivative of the similarity of the plane.""" return matrix(self._parent._f,[ [self._a, -self._b], [self._b, self._a]])
[docs]class SimilarityGroup(UniqueRepresentation,Group): r'''Group representing all similarities in the plane. This is the group generated by rotations, translations and dilations. ''' Element = Similarity def _element_constructor_(self, *args, **kwds): if len(args)!=1: return self.element_class(self, *args, **kwds) x = args[0] p=parent(x) if self._f.has_coerce_map_from(p): return self.element_class( self,self._f(x), self._f.zero(), self._f.zero(), self._f.zero()) if isinstance(p, SimilarityGroup): return self.element_class(self, x.a(), x.b(), x.s(), x.t()) if isinstance(p, TranslationGroup): return self.element_class( self,self._f.one(), self._f.zero(), x.s(), x.t() ) return self.element_class(self, x, **kwds) def _coerce_map_from_(self, S): if self._f.has_coerce_map_from(S): return True if isinstance(S, SimilarityGroup): return self._f.has_coerce_map_from(S._f) if isinstance(S, TranslationGroup): return self._f.has_coerce_map_from(S.base_field()) def __init__(self, base_field): self._f=base_field # The vector space of vectors self._vs = VectorSpace(self._f,2) Group.__init__(self, category=Groups().Infinite()) def _repr_(self): return "SimilarityGroup over field "+str(self._f) def one(self): return self.element_class(self,self._f.one(),self._f.zero(),self._f.zero(),self._f.zero()) def an_element(self): return self.element_class(self,self._f(ZZ_3),self._f(ZZ_4),self._f(ZZ_2),self._f(-ZZ_1)) def is_abelian(self): return False def gens(self): pairs=[ (self._f.one(),self._f.zero()), (self._f(ZZ_2),self._f.zero()), (self._f.zero(),self._f(ZZ_2)), (self._f(ZZ_3),self._f(ZZ_4))] l=[] for p in pairs: for v in self._vs.gens(): l.append(self.element_class(self,p[0],p[1],v[0],v[1])) return l # For pickling: #def __reduce__(self): # return self.__class__, (self._f,) #def _cmp_(self, other): # return self._f == other._f #__cmp__=_cmp_ def base_field(self): return self._f