Source code for geometry.relative_homology

r"""
This module contains a lazy implementation of a relative homology, 
$H_1(S,\Sigma; R)$, where $S$ is a similarity surface, $\Sigma$ is the singularities
or vertices, and $R$ is a ring. 

This implementation works for finite or infinite surfaces. For infinite surfaces,
we define relative homology formally. It is simply $R^E$ where $E$ is the edge set
modulo equivalences of two types:
1) If $e$ is an edge, and $e'$ is its opposite edge oriented counterclockwise from the polygon they bound then $e+e'=0$ in homology.
2) The sum of edges around a polygon is zero.
"""

from sage.structure.element import ModuleElement

[docs]class RelativeHomologyClass(ModuleElement): # Implementation notes: # self._d will be a dictionary mapping mapping pairs (label, edge) to the base_ring # By convention a pair will be in the dictionary only if its image is non-zero. def __init__(self, parent, d): r"""Do not call directly!""" # This should be a dict if not isinstance(d,dict): raise ValueError("RelativeHomologyClass.__init__ must be passed a dictionary.") self._d = d ModuleElement.__init__(self, parent=parent) def _rmul_(self, c): if c==self.parent().base_ring().zero(): return self.parent().zero() d=dict() r=self.parent().base_ring() for k,v in self._d.iteritems(): d[k]=r(c*v) return self.parent()._element_from_dict(d) def _add_(self, other): d=dict() r=self.parent().base_ring() for k,v in self._d.iteritems(): if other._d.has_key(k): total = v + other._d[k] if total != self.parent().base_ring().zero(): d[k] = r(total) else: d[k]=r(v) for k,v in other._d.iteritems(): if not self._d.has_key(k): d[k]=r(v) return self.parent()._element_from_dict(d) def _neg_(self): return self._rmul_(-self.parent().base_ring().one()) def __cmp__(self, other): # Construct a set of keys s=set() for k,v in self._d.iteritems(): s.add(k) for k,v in other._d.iteritems(): s.add(k) zero = self.parent().base_ring().zero() for k in s: c=cmp(self._d.get(k,zero), other._d.get(k,zero)) if c!=0: return c return 0 def __hash__(self): return hash(self._d) def _repr_(self): return repr(self._d)
[docs] def weight(self, label, e): r"""Return the weight of the indexed edge.""" return self._d.get( (label,e), self.parent().base_ring().zero() )
[docs] def weighted_edges(self): r"""Return the set of pairs (label,e) representing edges with non-zero weights.""" return self._d.keys()
[docs] def edges_with_weights(self): r""" Returns a list of items of the form ((label,e),w) where (label,e) represents and edge and w represents the non-zero weight assigned.""" return self._d.items()
from sage.modules.module import Module from sage.rings.integer_ring import ZZ from geometry.similarity_surface import SimilaritySurface_generic as Surface
[docs]class RelativeHomology(Module): Element = RelativeHomologyClass def __init__(self, surface, base_ring=ZZ): self._base_ring=base_ring self._s=surface self._cached_edges=dict() Module.__init__(self, base_ring)
[docs] def base_ring(self): return self._base_ring
def _element_from_dict(self,d): return self.element_class(self, d) def _element_constructor_(self, x): if instanceof(x, RelativeHomologyClass): d=dict() for k,v in x._d.iteritems(): v2=self._base_ring(v) if v2!=self._base_ring.zero(): d[k]=v2 return self.element_class(self, d)
[docs] def zero(self): return self.element_class(self, dict())
def __cmp__(self, other): if not isinstance(other, RelativeHomology): return cmp(type(other),RelativeHomology) c = cmp(self.base_ring(),other.base_ring()) if c!=0: return c return cmp(self._s, other._s)
[docs] def edge(self,label,e): r"""Return the homology class of the edge with the provided polygon label and edge index oriented counter-clockwise around the polygon.""" try: # If already cached, return the cached copy. return self._cached_edges[(label,e)] except KeyError: # not cached! num_edges = self._s.polygon(label).num_edges() # Check to see if all other edges of the polygon are cached. has_all_others = True for i in range(1,num_edges): e2=(e+i)%num_edges if not self._cached_edges.has_key((label,e2)): has_all_others=False break if has_all_others: # If all the other edges in the polygon are cached then we # know this edge's homology class is the negation of their sum. e2=(e+1)%num_edges total = -self._cached_edges[(label,e2)] for i in range(2,num_edges): e2=(e+i)%num_edges total -= self._cached_edges[(label,e2)] # Cache this edge's value and the opposite edge's value. self._cached_edges[(label,e)] = total label2,e2 = self._s.opposite_edge(label,e) self._cached_edges[(label2,e2)] = -total return total else: # At least one other edge is not cached, so we can think of # the current edge as a generator. d = dict() d[(label,e)] = self._base_ring.one() v = self._element_from_dict(d) # Cache this edge's value and the opposite edge's value. self._cached_edges[(label,e)] = v label2,e2 = self._s.opposite_edge(label,e) self._cached_edges[(label2,e2)] = -v return v