Source code for geometry.matrix_2x2

r"""
Some tools for 2x2 matrices and planar geometry.
"""
from sage.misc.cachefunc import cached_function

from sage.rings.all import ZZ, QQ, AA, QQbar, RR, CC, RDF, CDF, RIF, CIF
from sage.rings.rational import Rational
from sage.rings.complex_interval_field import ComplexIntervalField


from math import pi as pi_float

from sage.symbolic.constants import pi
from sage.matrix.constructor import matrix, identity_matrix

[docs]def number_field_to_AA(a): r""" It is a mess to convert an element of a number field to the algebraic field ``AA``. This is a temporary fix. """ try: return AA(a) except TypeError: return AA.polynomial_root(a.minpoly(), RIF(a))
[docs]def is_similarity(m): r""" Return ``True`` if ``m`` is a similarity and ``False`` otherwise. EXAMPLES:: sage: is_similarity(matrix([[0,1],[1,0]])) True sage: is_similarity(matrix([[0,-2],[2,0]])) True sage: is_similarity(matrix([[1,1],[0,1]])) False """ n = m * m.transpose() return n[0,1].is_zero() and n[1,0].is_zero()
[docs]def homothety_rotation_decomposition(m): r""" Return a couple composed of the homothety and a rotation matrix. The coefficients of the returned pair are either in the ground field of ``m`` or in the algebraic field ``AA``. EXAMPLES:: sage: R.<x> = PolynomialRing(QQ) sage: K.<sqrt2> = NumberField(x^2 - 2, embedding=1.4142) sage: m = matrix([[sqrt2, -sqrt2],[sqrt2,sqrt2]]) sage: a,rot = homothety_rotation_decomposition(m) sage: a 2 sage: rot [ 1/2*sqrt2 -1/2*sqrt2] [ 1/2*sqrt2 1/2*sqrt2] """ if not is_similarity(m): raise ValueError("the matrix must be a similarity") det = m.det() if not det.is_square(): if not AA.has_coerce_map_from(m.base_ring()): l = map(number_field_to_AA,m.list()) M = MatrixSpace(AA,2) m = M(l) else: m = m.change_ring(AA) sqrt_det = det.sqrt() return sqrt_det, m / sqrt_det
[docs]def similarity_from_vectors(u,v): r""" Return the unique similarity matrix that maps ``u`` to ``v``. EXAMPLES:: sage: V = VectorSpace(QQ,2) sage: u = V((1,0)) sage: v = V((0,1)) sage: m = similarity_from_vectors(u,v); m [ 0 -1] [ 1 0] sage: m*u == v True sage: u = V((2,1)) sage: v = V((1,-2)) sage: m = similarity_from_vectors(u,v); m [ 0 1] [-1 0] sage: m * u == v True An example built from the Pythagorean triple 3^2 + 4^2 = 5^2:: sage: u2 = V((5,0)) sage: v2 = V((3,4)) sage: m = similarity_from_vectors(u2,v2); m [ 3/5 -4/5] [ 4/5 3/5] sage: m * u2 == v2 True Some test over number fields:: sage: K.<sqrt2> = NumberField(x^2-2, embedding=1.4142) sage: V = VectorSpace(K,2) sage: u = V((sqrt2,0)) sage: v = V((1, 1)) sage: m = similarity_from_vectors(u,v); m [ 1/2*sqrt2 -1/2*sqrt2] [ 1/2*sqrt2 1/2*sqrt2] sage: m*u == v True sage: m = similarity_from_vectors(u, 2*v); m [ sqrt2 -sqrt2] [ sqrt2 sqrt2] sage: m*u == 2*v True """ assert u.parent() is v.parent() if u == v: return identity_matrix(u.base_ring(), n=2) sqnorm_u = u[0]*u[0] + u[1]*u[1] # Editted by Pat to remove worry about subfield... #sqnorm_v = v[0]*v[0] + v[1]*v[1] #if sqnorm_u != sqnorm_v: # r = sqnorm_u / sqnorm_v # if not r.is_square(): # raise ValueError("there is no similarity in the ground field; consider a suitable field extension. Note: u="+str(u)+" and v="+str(v)+".") # sqrt_r = r.sqrt() #else: # sqrt_r = 1 #vv = sqrt_r * v #cos_uv = (u[0]*vv[0] + u[1]*vv[1]) / sqnorm_u #sin_uv = (u[0]*vv[1] - u[1]*vv[0]) / sqnorm_u # return 1/sqrt_r * matrix([[cos_uv, -sin_uv],[sin_uv, cos_uv]]) cos_uv = (u[0]*v[0] + u[1]*v[1]) / sqnorm_u sin_uv = (u[0]*v[1] - u[1]*v[0]) / sqnorm_u return matrix([[cos_uv, -sin_uv],[sin_uv, cos_uv]])
[docs]def rotation_matrix_angle(r, check=False): r""" Return the angle of the rotation matrix ``r`` divided by ``2 pi``. EXAMPLES:: sage: def rot_matrix(p, q): ....: z = QQbar.zeta(q) ** p ....: c = z.real() ....: s = z.imag() ....: return matrix(AA, 2, [c,-s,s,c]) sage: [rotation_matrix_angle(rot_matrix(i, 5)) for i in range(1,5)] [1/5, 2/5, 3/5, 4/5] sage: [rotation_matrix_angle(rot_matrix(i,7)) for i in range(1,7)] [1/7, 2/7, 3/7, 4/7, 5/7, 6/7] Some random tests:: sage: for _ in range(100): ....: r = QQ.random_element(x=0,y=500) ....: r -= r.floor() ....: m = rot_matrix(r.numerator(), r.denominator()) ....: assert rotation_matrix_angle(m) == r .. NOTE:: This is using floating point arithmetic and might be wrong. """ e0,e1 = r.change_ring(CDF).eigenvalues() m0 = (e0.log() / 2 / CDF.pi()).imag() m1 = (e1.log() / 2 / CDF.pi()).imag() r0 = RR(m0).nearby_rational(max_denominator=10000) r1 = RR(m1).nearby_rational(max_denominator=10000) if r0 != -r1: raise RuntimeError r0 = r0.abs() if r[0][1] > 0: return QQ.one() - r0 else: return r0 if check: e = r.change_ring(AA).eigenvalues()[0] if e.minpoly() != ZZ['x'].cyclotomic_polynomial()(r.denominator()): raise RuntimeError z = QQbar.zeta(r.denominator()) if z**r.numerator() != e: raise RuntimeError return r
[docs]def is_cosine_sine_of_rational(c,s): r""" Check whether the given pair is a cosine and sine of a same rational angle. EXAMPLES:: sage: c = s = AA(sqrt(2))/2 sage: is_cosine_sine_of_rational(c,s) True sage: c = AA(sqrt(3))/2; s = AA(1/2) sage: is_cosine_sine_of_rational(c,s) True sage: c = AA(sqrt(5)/2); s = (1 - c**2).sqrt() sage: c**2 + s**2 1.000000000000000? sage: is_cosine_sine_of_rational(c,s) False sage: c = (AA(sqrt(5)) + 1)/4; s = (1 - c**2).sqrt() sage: is_cosine_sine_of_rational(c,s) True """ return (c + QQbar.gen() * s).minpoly().is_cyclotomic()
[docs]def angle(u, v, assume_rational=False): r""" Return the angle between the vectors ``u`` and ``v`` divided by `2 \pi`. INPUT: - ``u``, ``v`` - vectors - ``assume_rational`` - whether we assume that the angle is a multiple rational of ``pi``. By default it is ``False`` but if it is known in advance that the result is rational then setting it to ``True`` might be much faster. EXAMPLES: As the implementation is dirty, we at least check that it works for all denominator up to 20:: sage: u = vector((AA(1),AA(0))) sage: for n in xsrange(1,20): # long time (10 sec) ....: for k in xsrange(1,n): ....: v = vector((AA(cos(2*k*pi/n)), AA(sin(2*k*pi/n)))) ....: assert angle(u,v) == k/n And we test up to 50 when setting ``assume_rational`` to ``True``:: sage: for n in xsrange(1,50): # long time (25 sec) ....: for k in xsrange(1,n): ....: v = vector((AA(cos(2*k*pi/n)), AA(sin(2*k*pi/n)))) ....: assert angle(u,v,assume_rational=True) == k/n If the angle is not rational, then the method returns an element in the real lazy field:: sage: v = vector((AA(sqrt(2)), AA(sqrt(3)))) sage: a = angle(u,v) sage: a 0.1410235542122437? sage: exp(2*pi.n()*CC(0,1)*a.n()) 0.632455532033676 + 0.774596669241483*I sage: v / v.norm() (0.6324555320336758?, 0.774596669241484?) """ if not assume_rational: sqnorm_u = u[0] * u[0] + u[1] * u[1] sqnorm_v = v[0] * v[0] + v[1] * v[1] if sqnorm_u != sqnorm_v: uu = u.change_ring(AA) vv = (AA(sqnorm_u) / AA(sqnorm_v)).sqrt() * v.change_ring(AA) else: uu = u vv= v cos_uv = (uu[0]*vv[0] + uu[1]*vv[1]) / sqnorm_u sin_uv = (uu[0]*vv[1] - uu[1]*vv[0]) / sqnorm_u is_rational = is_cosine_sine_of_rational(cos_uv, sin_uv) else: is_rational = True if is_rational: # fast and dirty way using floating point approximation # (see below for a slow but exact method) from math import acos,asin,sqrt u0 = float(u[0]); u1 = float(u[1]) v0 = float(v[0]); v1 = float(v[1]) cos_uv = (u0*v0 + u1*v1) / sqrt((u0*u0 + u1*u1)*(v0*v0 + v1*v1)) angle = acos(float(cos_uv)) / (2*pi_float) # rat number between 0 and 1/2 angle_rat = RR(angle).nearby_rational(0.00000001) if angle_rat.denominator() > 100: raise NotImplementedError("the numerical method used is not smart enough!") if u0*v1 - u1*v0 < 0: return 1 - angle_rat return angle_rat else: from sage.functions.trig import acos from sage.rings.real_lazy import RLF from sage.symbolic.constants import pi if sin_uv > 0: return acos(RLF(cos_uv)) / RLF(2*pi) else: return -acos(RLF(cos_uv)) / RLF(2*pi) # a neater way is provided below by working only with number fields # but this method is slower... #sqnorm_u = u[0]*u[0] + u[1]*u[1] #sqnorm_v = v[0]*v[0] + v[1]*v[1] # #if sqnorm_u != sqnorm_v: # # we need to take a square root in order that u and v have the # # same norm # u = (1 / AA(sqnorm_u)).sqrt() * u.change_ring(AA) # v = (1 / AA(sqnorm_v)).sqrt() * v.change_ring(AA) # sqnorm_u = AA.one() # sqnorm_v = AA.one() # #cos_uv = (u[0]*v[0] + u[1]*v[1]) / sqnorm_u #sin_uv = (u[0]*v[1] - u[1]*v[0]) / sqnorm_u