Geodesic representatives on surfaces without metrics arXiv:2301.03727

RTG Colloquium, Heidelberg

January 16, 2024

Pat Hooper (City College of New York and CUNY Graduate Center)

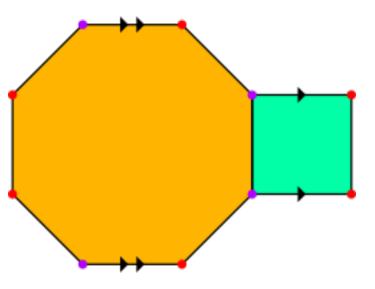
joint work with Ferrán Valdez and Barak Weiss.

Talk Outline

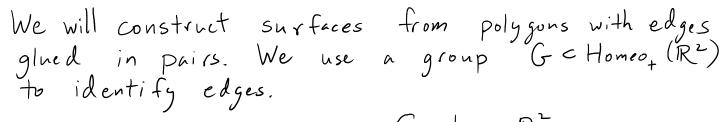
Translation +) Surfaces from polygons: Dilation Sur faces 2) Tori @ Translation Structures 6 Dilation structures © Realization theorem for homotopy classes of curves @ Zebra structures 3) Higher genus surfaces

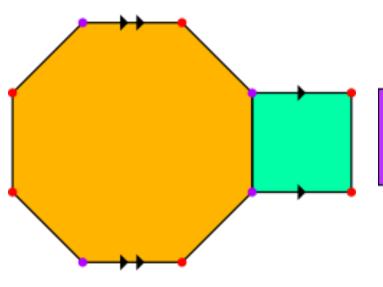
Surfaces from Euclidean polygons

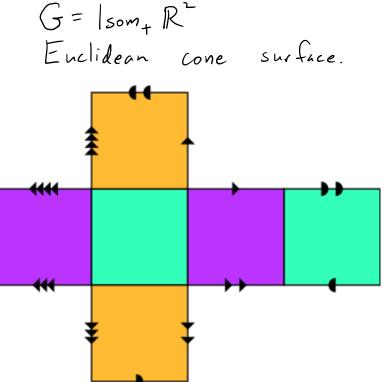
We will construct surfaces from polygons with edges glued in pairs. We use a group
$$G \in Homeo_{+}(\mathbb{R}^{2})$$
 to identify edges.



Surfaces from Euclidean polygons





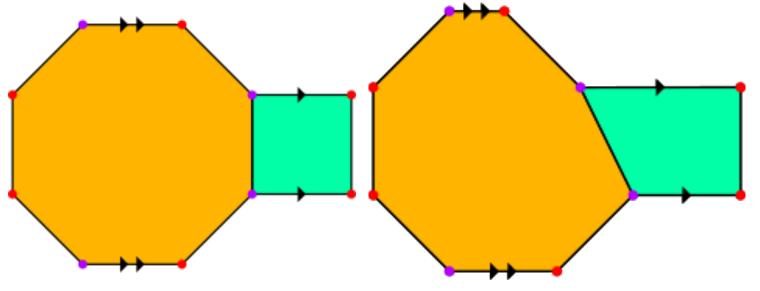


Surfaces from Euclidean polygons

We will construct surfaces from polygons with edges glued in pairs. We use a group $G \in Homeo_{+}(\mathbb{R}^{2})$ to identify edges.

G = {translations} Translation Surface

G= < Dilations, Translations> Dilation Surface



Topics studied related to Dilation Surfaces:

- Algebraic structure of moduli spaces (Veech, Apisa Bainbridge Wang)
- Affine symmetry groups (Duryev Fougeron Ghazouani)
- Affine realization of mapping classes (Wang)
- Dynamics of directional foliations (Liousse, Bowman Sanderson, Boulanger - Fougeron - Ghazouani)
- Existence of closed leaves (Boulanger Ghazouani Tahar)

Related ideas:

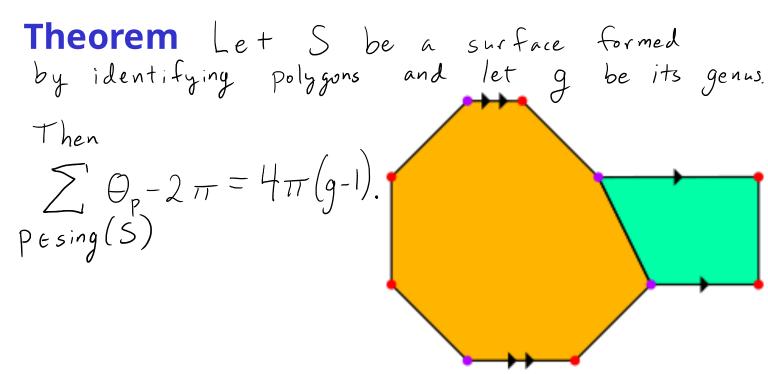
- Affine interval exchange maps (Camelier Gutierrez, Cobo, Cobo Gutiérrez-Romo Maass, Marmi Moussa Yoccoz, ...)
- Twisted measured laminations (McMullen, for studying fibered 3-manifolds)
- Infinite translation surfaces (Hooper Hubert Weiss)

Goal of this talk:

To understand the geometry of homotopy classes of closed curves Are there canonical representatives? What properties do they have?

Gauss-Bonnet

Points formed from identified vertices form the singularities of our surface. The angle of a singularity p is Op, the sum of interior angles at vertices identified to create p.



Gauss-Bonnet

Points formed from identified vertices form the singularities of our surface. The angle of a singularity p is Op, the sum of interior angles at vertices identified to create p.

Theorem Let S be a surface formed by identifying polygons and let g be its genus. Then $\sum_{\substack{\rho \in \text{sing}(S)}} \Theta_{\rho} - 2\pi = 4\pi(g-1).$ Example Both the red and purple singularities have $\Theta_p = 4\pi so q = 2.$

Tori

Pic from youtube video "Homer Simpson Donuts recipe" https://www.youtube.com/watch?v=MqXPADrPc94

Translation surface tori

Let S be a torus with a translation
structure. Then the universal cover is
$$\mathbb{R}^2$$

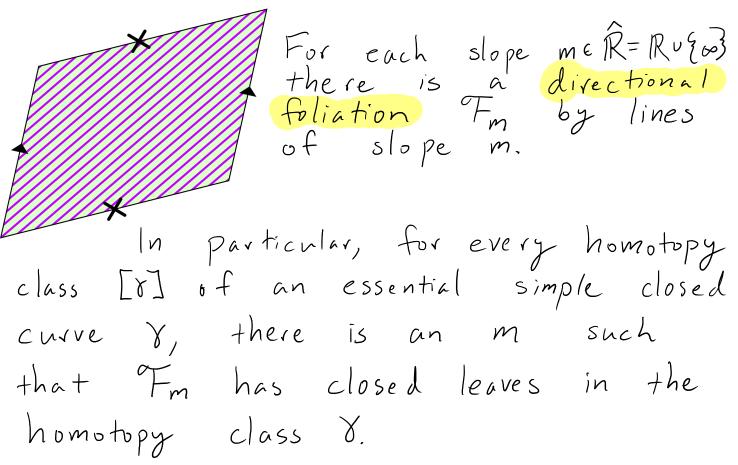
and $S = \mathbb{R}^2 / \Lambda$ where $\Lambda \in \mathbb{R}^2$ is a lattice
in the translation group.

Translation surface tori

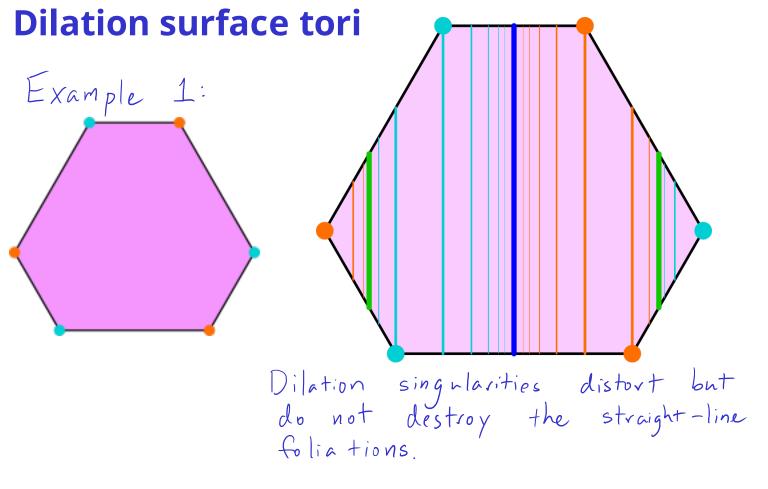
Let S be a torus with a translation
structure. Then the universal cover is
$$\mathbb{R}^2$$

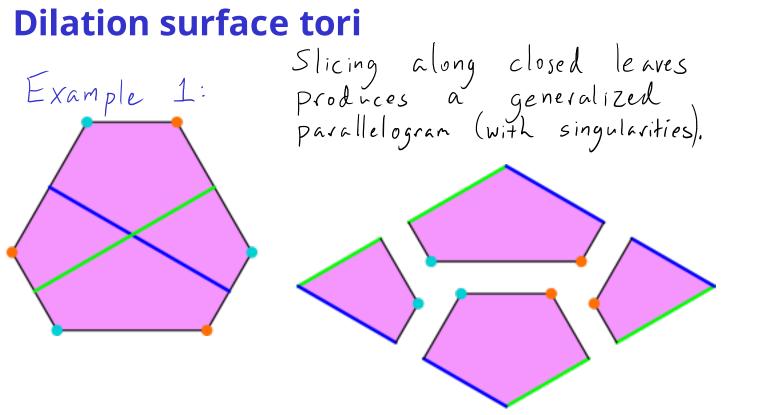
and $S = \mathbb{R}^2 / \Lambda$ where $\Lambda \in \mathbb{R}^2$ is a lattice
in the translation group.
For each slope $m \in \widehat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$
there is a directional
foliation \mathcal{F}_m by lines
of slope m .

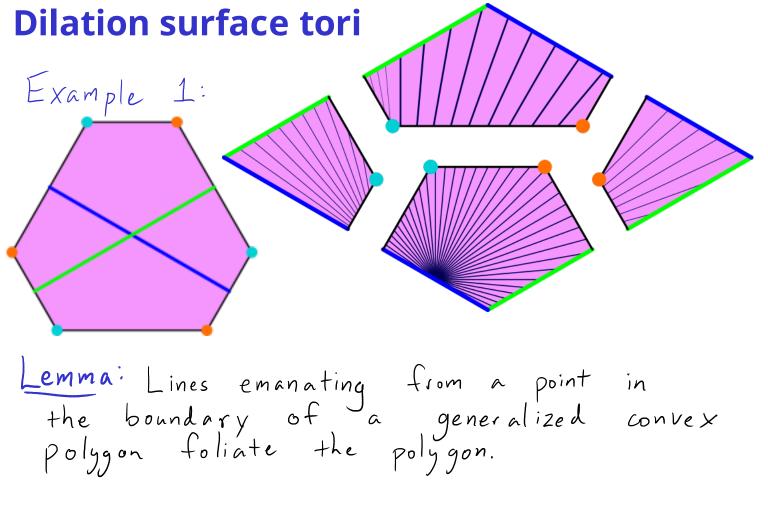
Translation surface tori

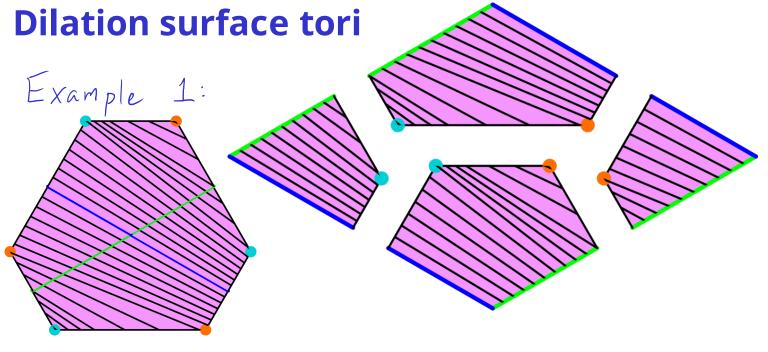


Example 1:



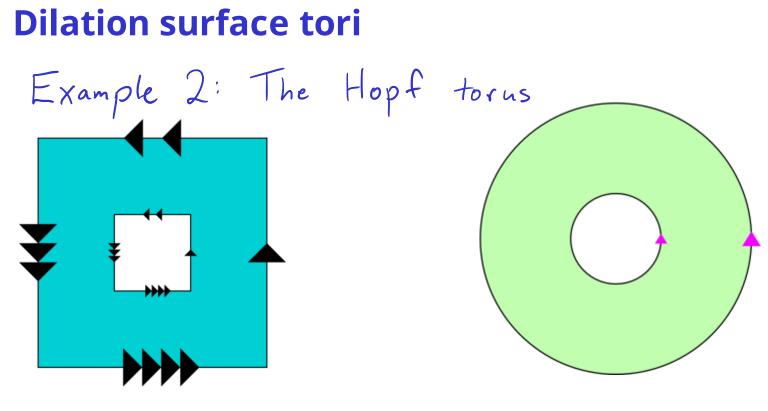






Lemma: Lines emanating from a point in the boundary of a generalized convex polygon foliate the polygon.

Dilation surface tori Example 1: Theorem (HVW) A dilation torus with two non-homotopic closed leaves has the property that there is a foliation by closed leaves in every homotopy class of an essential simple closed curve (scc).



Example 2: The Hopf torus The Hopf torus has a foliation by closed leaves with two leaves of every slope.

Dilation surface tori Example 2: The Hopf torus The Hopf torus has a foliation by closed leaves with two leaves of every slope. Observe: There is no closed leaf in the homotopy class of the purple simple closed curve.

Theorem (HVW w/ ideas of Selim Ghazonani)

or 2) There is a unique esce & for which there is such a foliation and this foliation has leaves of all slopes.

Theorem (HVW w/ ideas of Selim Ghazonani)

or ② There is a unique escc V for which there is such a foliation and this foliation has leaves of all slopes This theorem holds for "Zebra" structures on tori as well...

Two guiding questions:

() What did we need for the Theorem?

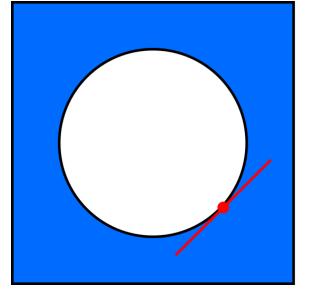
What happens as the number of dilation singularities tends to infinity?

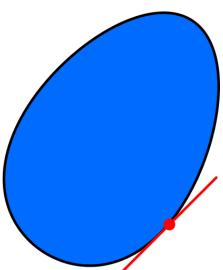
Paco Rabanne, Combinaison, Collection haute couture, Spring 1997, as seen in Marseille

Two guiding questions:

() What did we need for the Theorem?

What happens as the number of dilation singularities tends to infinity?



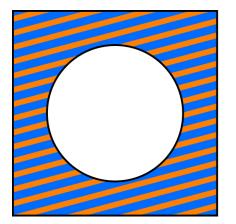


Paco Rabanne, Combinaison, Collection haute couture, Spring 1997, as seen in Marseille

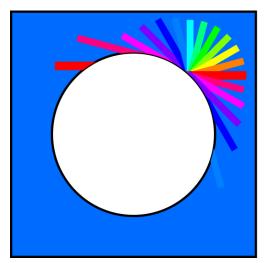
Definition of a Zebra torus:

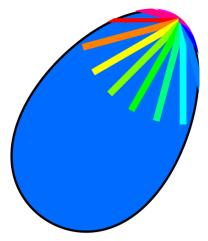
A zebra structure on the torus T is a collection of foliations indexed by slope, $\{\mathcal{F}_m:m\in\widehat{\mathbb{R}}=\mathbb{R}\cup\{\infty\}\}$ such that for every pET there is a neighborhood Np of p and a homeomorphism $h_p: N_p \to \mathbb{R}^2$ such that (1) $h_p(p) = \overline{0}$, and The second of the state of through through D.
The state of t

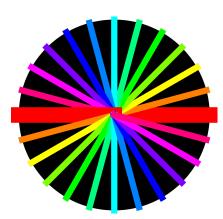
Definition of a Zebra torus:



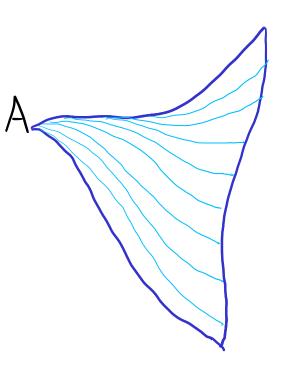
We require a foliation of every "slope" and pointwise local compatibility.







Important Lemma: Given a triangle ABC in a zebra surface, the leaves emanating from A foliate DABC.



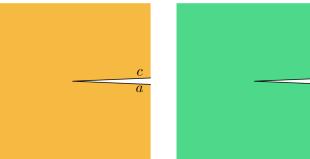
Important Lemma: Given a triangle ABC in a zebra surface, the leaves emanating from A foliate DABC. Poor I triangle Thus gas and needs to be busped

Busp lemma If AD and DE are arcs of leaves and *XADE*<*T* then there is an arc of a leaf from A to a point on DE~ ED, E3.

Surfaces of genus 2 and higher

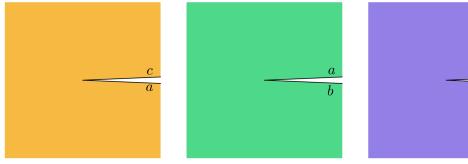
Responses to the prompt "Create for me a photorealistic image of a genus two surface, covered with pink frosting and sprinkles" by Microsoft's image generator.

Dilation surface singularities

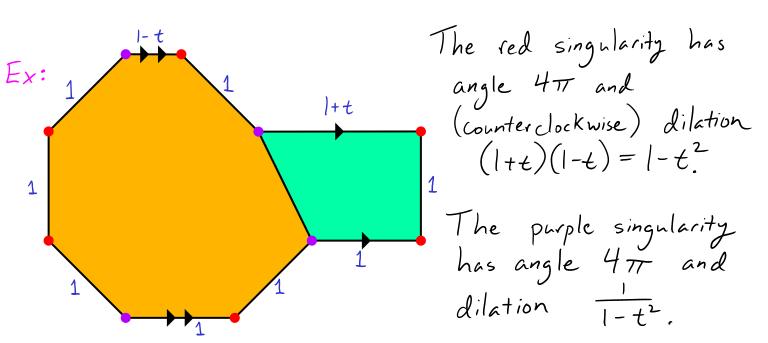


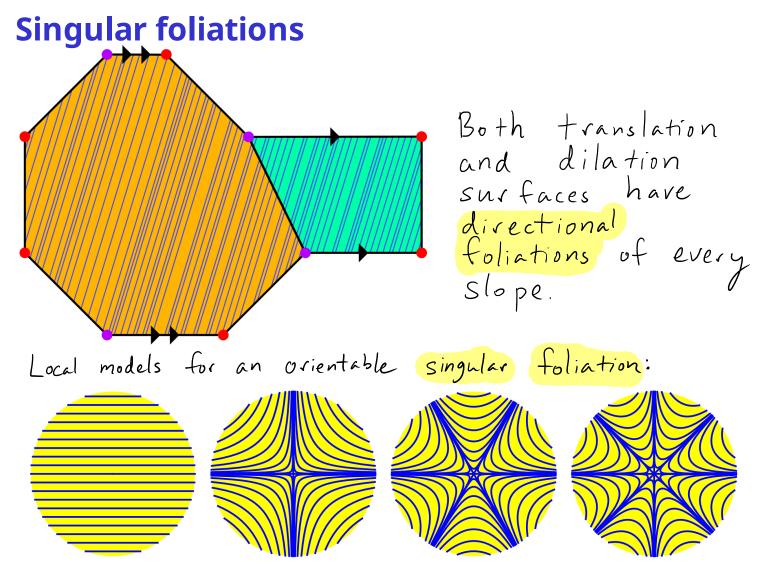
Model: Slit planes C-R+ glued cyclically by dilations along boundary rays.

Dilation surface singularities



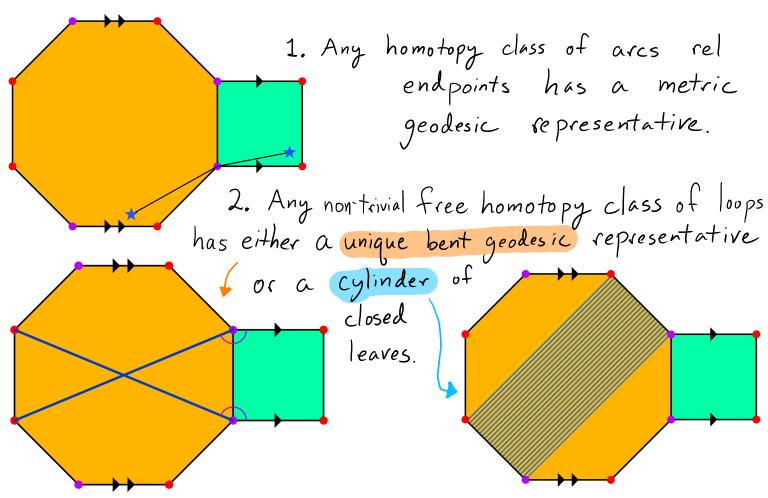
Model: Slit planes C-R+ glued cyclically by dilations along boundary rays.





Metric geodesics in translation surfaces

In a closed translation surface...



Trails in dilation surfaces

A trail in a dilation surface is a maximal bi-infinite path that follows leaves (maximal line segments), transitioning between leaves only at singularities in such a way so that the two angles made at the singular transitions measure at least TT. closed trail -closed geodesic

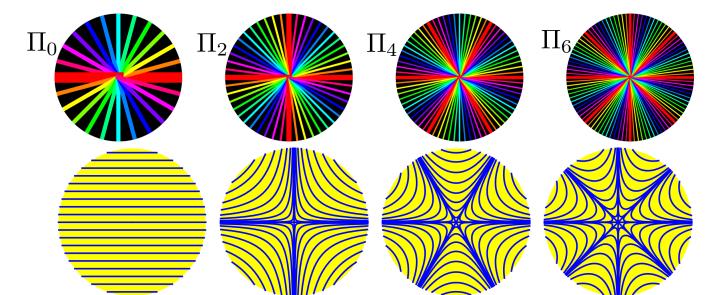
Trail Representatives A homotopy class of closed curves represented by a Unique trail. -A dilation cylinder representing a homotopy class of closed curves.

Stellated foliation/zebra structures

Let S be an oriented topological surface and let $\{\mathcal{F}_m: m \in \hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}\}$ be a collection of singular foliations indexed by slope.

We say that $\{\mathcal{F}_m\}$ is a zebra structure if:

For each point p in S, there is an open neighborhood N containing p and a homeomorphism from N to a model space \prod_k such that for all $m \in \hat{\mathbb{R}}$, the homeomorphism induces a bijection between the prongs of \mathcal{F}_m at p and the rays of slope m in \prod_k .

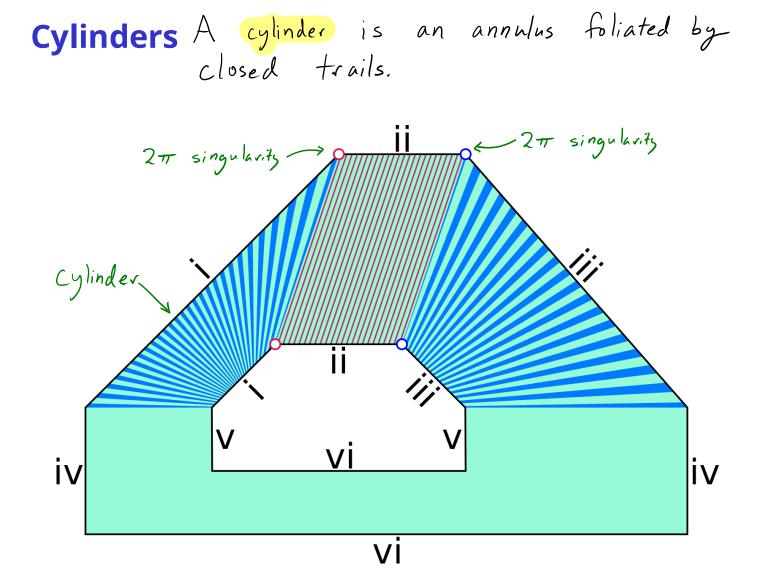


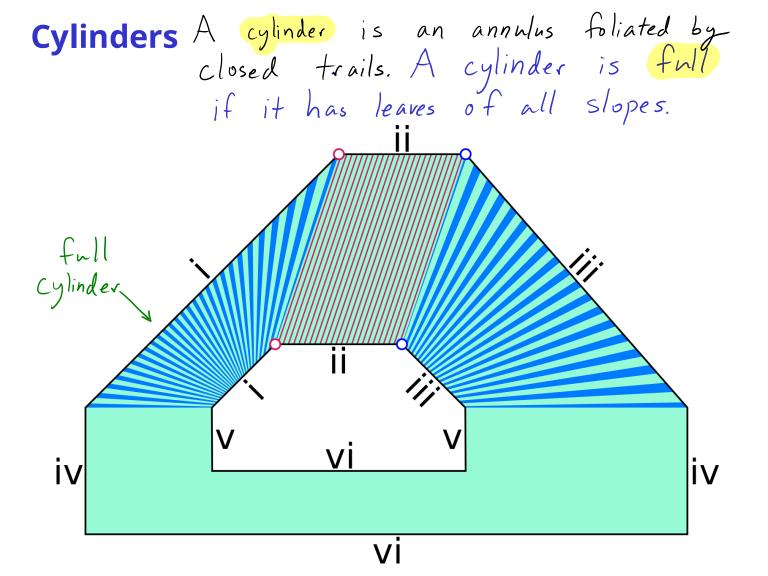
 Translation and dilation structures give rise to Zebra Structures.

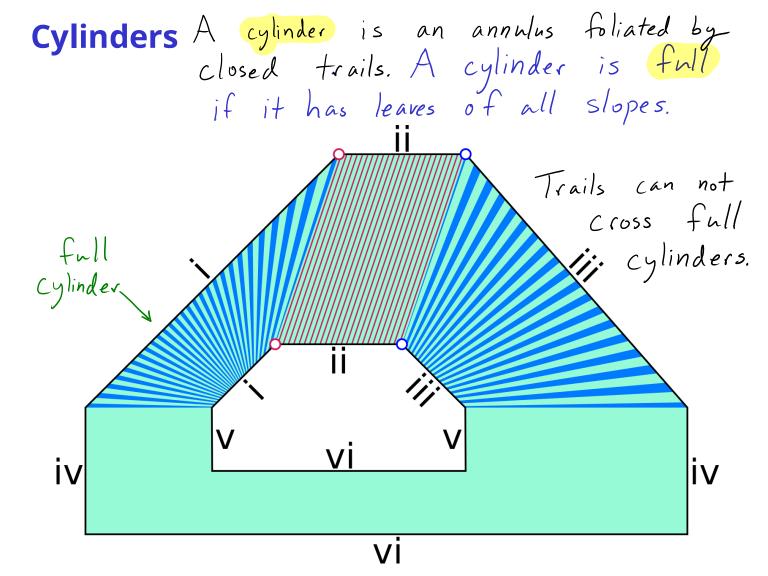
- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism.

- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism. • $Homeo_{+}(\hat{R})$ acts on zebra structures. You can act on the polygons before gluing.

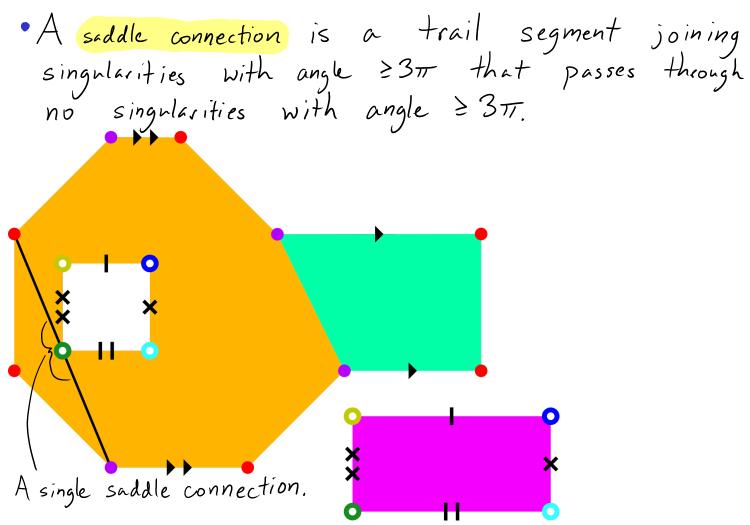
- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism. • $Homeo_{+}(\hat{R})$ acts on zebra structures. You can act on the polygons before gluing. • ???







Definitions



Definitions

· A saddle connection is a trail segment joining singularities with angle = 377 that passes through no singularities with angle = 3TT. • A leaf triangulation is a triangulation whose edges are saddle connections

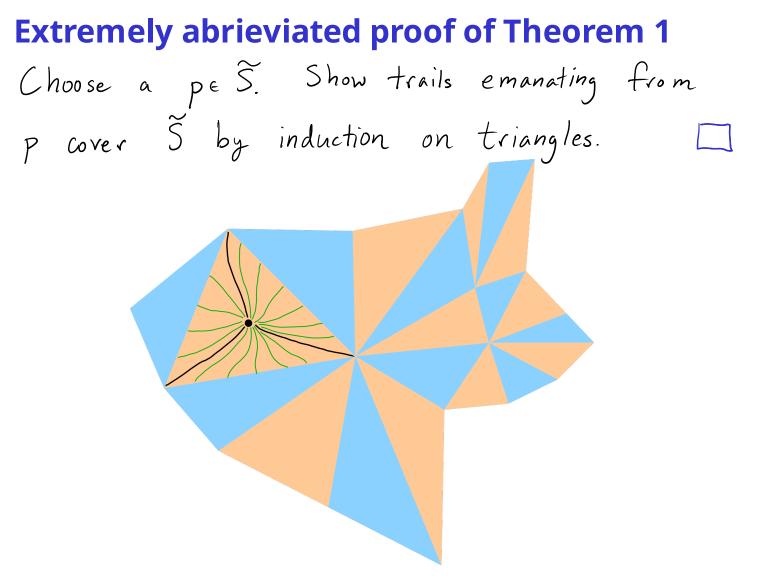
Theorems (H - Valdez - Weiss)

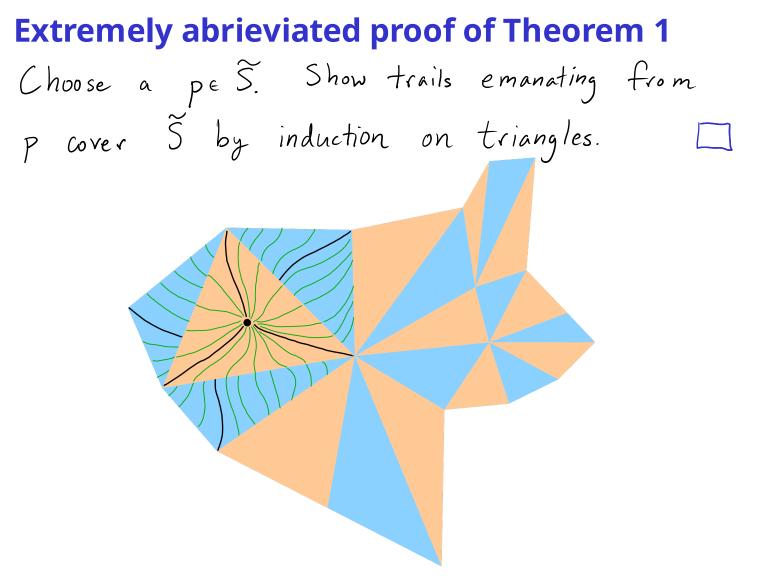
Theorem 1. Let \widehat{S} be the universal cover of a zebra surface. If \widehat{S} has a leaf triangulation then \widehat{S} is convex: Any two points can be joined by a trail.

Theorems (H - Valdez - Weiss)

Theorem 1. Let S be the universal cover of a zebra surface. If S has a leaf triangulation then S is convex: Any two points can be joined by a trail. Theorem 2. If S is convex, then every homotopy class of essential loops on S contains either a unique closed trail or there is a cylinder foliated by trails.

Theorem 3 (H-V-W) Let S be a zebra structure on a closed surface. The following are equiv. (DS has a leaf triangulation. 2) The universal cover S is convex. (3) Every nontrivial homotopy class of closed curves is realized by a trail. (4) S contains no full cylinders.





Extremely abrieviated proof of Theorem 1 Choose a pe S. Show trails emanating from p cover S by induction on triangles.

Extremely abrieviated proof of Theorem 1 Choose a pe S. Show trails emanating from p cover S by induction on triangles.

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Can $SL(2,\mathbb{R})$ or $Homeo_{+}(\widehat{\mathbb{R}})$ be used for senormalization of foliations?

• Ase there zebra structures with interesting
$$Homeo_{+}(\hat{R})$$
 stabilizers (up to homeomorphism of the surface)?