Geodesic representatives on surfaces without metrics

arXiv:2301.03727

Pat Hooper

City College of New York and CUNY Graduate Center

joint work with Ferrán Valdez and Barak Weiss.

Talk Outline 1) Translation surfaces 2) Dilation surfaces 3) Metric geodesics / Trails 4) Zebra structures 5) Theorems on trails 6) Open questions.

Translation surfaces

A translation surface is an topological surface with an atlas of charts to R² such that transition functions are translations (and some singular points). **Objects associated to translation surfaces** · cone singularities (W/ angle 2KT for KEZ,) • a notion of direction (and slope) · straight line flow in every direction • an area measure (Lebesgue). · measured foliations of all slopes. • a metric (and so metric geodesics) • an SL(2, R) action on the space of surfaces.

Metric geodesics in translation surfaces

In a closed translation surface...

Dilation surface singularities

Model: Slit planes C-R+ glued cyclically by dilations along boundary rays.

The red singularity has Ex: angle 4π and (counterclockwise) dilation $(1+t)(1-t) = 1-t^2$. +tThe purple singularity has angle 477 and dilation $\frac{1}{1-t^2}$.

Translation Surfaces versus Dilation Surfaces

1) A metric, 2 Lebesque measure. (3) GL(2, R) action on the space of surfaces. (4) A notion of direction or slope m∈R=Ru{+∞]. 5 Measured foliations of all slopes 6 Straight line flow in every direction 7 Metric geodesics

Translation surfaces have:

(1) No natural metric. 2) No natural Borel measure. (3) SL(2, R) acts. (4) Yes! 5 Singular foliations instead. (6) No flow; unpavametrized leaves. 7"Trails" Main topic of talk.

Dilation surfaces have:

Translation Surfaces versus Dilation Surfaces

() A metric, 2) Lebesgue measure. (3) GL(2, R) action on the space of surfaces. (4) A notion of direction or slope me R= RU {+∞}. 5 Measured foliations of all slopes 6 Straight line flow in every direction Metric geodesics

Zebra Surfaces have: Translation surfaces have: Dilation surfaces have: 2 No natural Borel measure. 2) Same 3) SL(2 P) 3 Better: (3) SL(2, R) acts. Homeo (R) acts. (4) Yes, same. 4) Yes! 5 Singular foliations 5 Same. instead. 6 No flow; un pavametrized 6 Same D'Trails & Main topic D'Trails here of talk too.

Topics studied related to Dilation Surfaces:

- Algebraic structure of moduli spaces (Veech, Apisa Bainbridge Wang)
- Affine symmetry groups (Duryev Fougeron Ghazouani)
- Affine realization of mapping classes (Wang)
- Dynamics of directional foliations (Liousse, Bowman Sanderson, Boulanger - Fougeron - Ghazouani)
- Existence of closed leaves (Boulanger Ghazouani Tahar)

Related ideas:

- Affine interval exchange maps (Camelier Gutierrez, Cobo, Cobo Gutiérrez-Romo Maass, Marmi Moussa Yoccoz, ...)
- Twisted measured laminations (McMullen, for studying fibered 3-manifolds)
- Infinite translation surfaces (Hooper Hubert Weiss)

Trails in dilation surfaces

A trail in a dilation surface is a maximal bi-infinite path that follows leaves (maximal line segments), transitioning between leaves only at singularities in such a way so that the two angles made at the singular transitions measure at least TT. closed trail -closed geodesic

Trails in dilation surfaces

A trail in a dilation surface is a maximal bi-infinite path that follows leaves (maximal line segments), transitioning between leaves only at singularities in such a way so that the two angles made at the singular transitions measure at least TT. Main goal: State a theorem guaranteeing when a homotopy class can be guaranteed to have a trail representative.

Trail Representatives A homotopy class of closed curves represented by a Unique trail. -A dilation cylinder representing a homotopy class of closed curves.

The Hopf torus as a counterexample

Philosophical issues:

Philosophical issues:

Stellated foliation/zebra structures

Let S be an oriented topological surface and let $\{\mathcal{F}_m: m \in \hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}\}$ be a collection of singular foliations indexed by slope.

We say that $\{\mathcal{F}_m\}$ is a zebra structure if:

For each point p in S, there is an open neighborhood N containing p and a homeomorphism from N to a model space \prod_k such that for all $m \in \hat{\mathbb{R}}$, the homeomorphism induces a bijection between the prongs of \mathcal{F}_m at p and the rays of slope m in \prod_k .

 Translation and dilation structures give rise to Zebra Structures.

- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism.

- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism. • $Homeo_{+}(\hat{R})$ acts on zebra structures. You can act on the polygons before gluing.

- Translation and dilation structures give rise to Zebra Structures.
- Surfaces formed by gluing parallel edges of a union of polygons together by homeomorphism. • $Homeo_{+}(\hat{R})$ acts on zebra structures. You can act on the polygons before gluing. . ???

Definitions

Definitions

· A saddle connection is a trail segment joining singularities with angle $\ge 3\pi$ that passes through no singularities with angle $\ge 3\pi$. • A leaf triangulation is a triangulation whose edges are saddle connections

Theorems(H - Valdez - Weiss)

Theorem 1. Let \hat{S} be the universal cover of a zebra surface. If \hat{S} has a leaf triangulation then \hat{S} is convex: Any two points can be joined by a trail.

Theorems (H - Valdez - Weiss)

Theorem 1. Let S be the universal cover of a zebra surface. If S has a leaf triangulation then S is convex: Any two points can be joined by a trail. Theorem 2. If S is convex, then every homotopy class of essential loops on S contains either a unique closed trail or there is a cylinder foliated by trails.

Theorem 3 (H-V-W) Let S be a zebra structure on a closed surface. The following are equiv. (DS has a leaf triangulation. 2) The universal cover S is convex. (3) Every nontrivial homotopy class of closed curves is realized by a trail. (4) S contains no full cylinders.

Extremely abrieviated proof of Theorem 1 Choose a pe S. Show trails emanating from p cover S by induction on triangles.

Extremely abrieviated proof of Theorem 1 Choose a pe S. Show trails emanating from p cover S by induction on triangles.

Ingredient: Given a triangle ABC in a zebra surface, the leaves emanating from A foliate DABC.

Ingredient: Given a triangle ABC in a zebra surface, the leaves emanating from A foliate DABC. Poor triangle hus gas and needs to be burped

Busp lemma If AD and DE are arcs of leaves and *XADE*<*T* then there is an arc of a leaf from A to a point on DE~ ED, E3.

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Is there a uniformization theorem for Zebra structures?

• Can $SL(2,\mathbb{R})$ or $Homeo_{+}(\widehat{\mathbb{R}})$ be used for senormalization of foliations?

• Ase there zebra structures with interesting
$$Homeo_{+}(\hat{R})$$
 stabilizers (up to homeomorphism of the surface)?