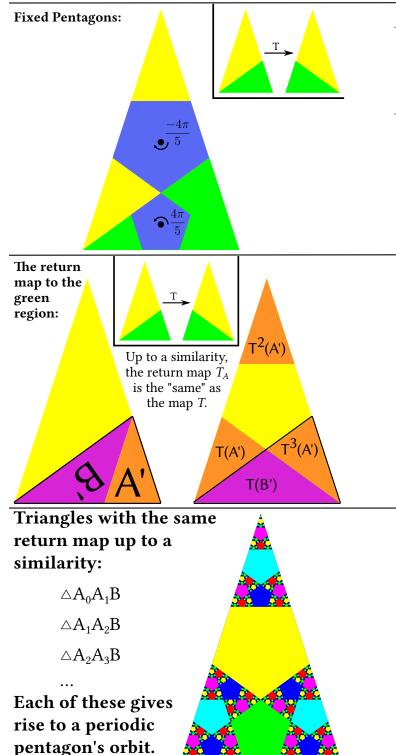
Renormalization in piecewise isometries

MathFest 2014 @ CUNY Graduate Center

Pat Hooper

City College of New York and CUNY Graduate Center



Dynamical systems and renormalization

A *dynamical system* is a space together with a time independent update rule.

So, a map $T: X \to X$ is a dynamical system.

Renormalization is an approach to understanding certain dynamical systems. It is used to study:

- Complex dynamics (e.g., iteration of polynomials- Julia sets, Mandlebrot set)
- Flows on symmetric spaces
- * Piecewise isometries

Return maps:

Let $T: X \rightarrow X$ be a map.

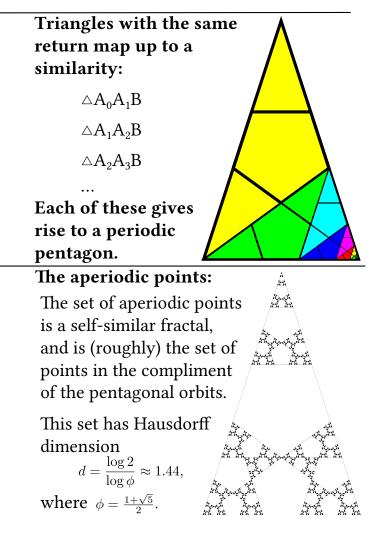
The **forward orbit** of $x \in X$ is the sequence:

{T(x), $T^{2}(x)=T \circ T(x)$, $T^{3}(x)=T \circ T \circ T(x)$, ...}.

Let *A* be a subset of *X*. The **first return** of $a \in A$ to *A* is the first point in the forward orbit of *a* which lies in *A*.

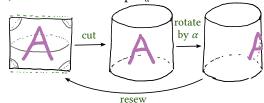
Let $A' \subset A$ be the set of points with a first return to A.

The **return map** to *A* is the map $T_A:A' \rightarrow A$ which sends a point $a \in A'$ to its first return $T_A(a)$.



A family of piecewise isometries on the pillowcase:

Then, we can define a map $H_{\alpha}: P \rightarrow P$:



We can do the same in the vertical direction. We define $V_{\beta}: P \rightarrow P$, with $0 < \beta < \frac{1}{2}$.



A renormalization theorem:

For $x \in \mathbb{R}$, let *nint*(*x*) denote the nearest integer. For $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$ irrational, define:

 $R(\alpha,\beta) = \Big(\Big| \frac{\alpha}{1-2\alpha} - nint(\frac{\alpha}{1-2\alpha}) \Big|, \Big| \frac{\beta}{1-2\beta} - nint(\frac{\beta}{1-2\beta}) \Big| \Big).$

Theorem. Let α and β be irrationals satisfying $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. Then, there is a rectangle Q in the pillowcase P so that the return map of $T_{\alpha,\beta}$ to Q is the same as $T_{R(\alpha,\beta)}$ up to an affine coordinate change and sewing up Q to make a pillowcase.

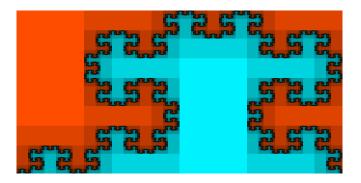
Philosophy of Renormalization:

Corollary. Let α and β be irrationals satisfying $0 < \alpha < \frac{1}{2}$ and $0 < \beta < \frac{1}{2}$. Consider the forward *R*-orbit of (α, β) : $\{ R(\alpha, \beta), R^2(\alpha, \beta) = R \circ R(\alpha, \beta), \dots \}.$

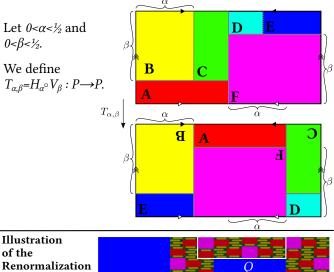
For every integer *n>0*, there is a rectangle Q_n so that the return map of $T_{\alpha,\beta}$ to Q_n is affinely conjugate to $T_{R^n(\alpha,\beta)}$.

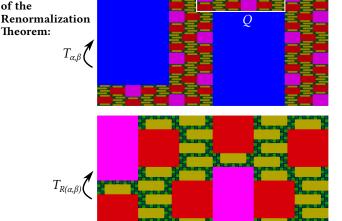
Philosophy. The dynamical behavior of $T_{\alpha,\beta}$ is related to the dynamics of the forward *R*-orbit of (α, β) .

If the orbit of (α, β) avoids a certain collection of rectangles in the (α, β) -plane, then the aperiodic points of $T_{\alpha,\beta}$ form a curve.

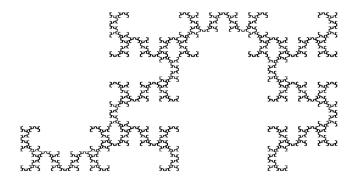


A family of piecewise isometries on the pillowcase:





If (α, β) is periodic under *R*, then $T_{\alpha,\beta}$ is self-similar.



Let $(\alpha_n, \beta_n) = R^n(\alpha, \beta)$. If $limsup \min(\alpha_n, \beta_n) > 0$, then the aperiodic points have zero area.

But there are examples with positive area:

