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Billiard trajectories in polygons

A billiard path in a polygon P is a unit speed path
which is

• geodesic in the interior,

• and bounces off ∂P according to the laws of op-
tics. (The angle of incidence must equal the angle
of reflection.)

Billiard trajectories are not defined through vertices.

1

2

3

2



Motivating open question: Periodic
billiard paths

A periodic billiard path is a billiard path which re-
turns to its starting point traveling in the same direc-
tion.

Open Question:
Does every polygon have a periodic billiard path?

The following classes of polygons are known to have
periodic billiard paths.

• Acute triangles (Fagnano, 1755)

• Rational polygons (polygons whose angles are
rational multiples of π) (Masur, 1986)

• Triangles whose largest angle is less than 100
degrees (Schwartz, 2005)
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Main result

Today’s main result is that nearly isosceles triangles
have periodic billiard paths.

More rigorously,

Theorem (H.-Schwartz):
There is an open set U of triangles containing the
isoceles triangles such that every triangle T ∈ U has
a periodic billiard path.
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Proving a polygon has a periodic
billiard path

Consider the simplifying observation to the below.

• Suppose a billiard ball is aimed toward the edge
of a polygon.

• Reflect the polygon across the edge.

• If we allow the billiard ball to pass straight through
the edge, then its location in the new polygon is
the same as its location in the original polygon if
we had followed the billiard trajectory.
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Unfolding a polygon

• An orbit-typeW is a sequence of edges of a poly-
gon.

• The sequence of edges hit by a periodic billiard
path is called the orbit-type of the path.

• The unfolding of a polygon P , U(P,W ), is the
chain of polygons obtained by iteratively reflecting
the polygon P across the edges in the sequence
W .
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Conditions for the existence of a
periodic billiard path

The following two conditions on the unfoldingU(P,W )
are necessary and sufficient to guarantee the exis-
tence of billiard path which hits the edges of P in the
sequence W of even length.

1. The last triangle of the unfolding must be a paral-
lel translate of the first triangle of the unfolding.

2. There must be line segment contained entirely in
the unfolding (and not passing through vertices)
which runs from a point in the initial triangle to
the corresponding point in the final triangle.
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The closed condition for existence
Let ∆ be a triangle with angles α, β, and γ.

Claim: Let W be a sequence of edges of ∆ of even
length. Then the last polygon of U(∆,W ) is a rota-
tion of the first by a linear combination of {2α,2β,2γ}.

The unfolding of the orbit-type W = 12010210.

Proof. 01 7→ +2γ 12 7→ +2α 20 7→ +2β

10 7→ −2γ 21 7→ −2α 02 7→ −2β

Proposition. This linear sum is a multiple of 2π on an
open set if and only if for each d ∈ {0,1,2}, the num-
ber of times d appears in odd positions of W equals
the number of times in even positions.
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The tile

Definition: The orbit-tile O(W ) of an orbit-type W
is the set of all triangles ∆ for which there is a peri-
odic billiard path in ∆ that hits the edges of a triangle
according to the sequence W .

We have seen that O(W ) is a non-empty open set
only if the number of times d ∈ {0,1,2} appears in
odd positions of W equals the number of times it ap-
pears in even positions. In this case, we call W sta-
ble.

Otherwise O(W ) is an open subset of a union of “ra-
tional lines”, those places where

2aα+ 2bβ + 2cγ ≡ 0 (mod 2π),

where a, b, c ∈ Z are not all equal. In this case, W is
called unstable.

To prove large sets of triangles have periodic billiard
paths, we will need to consider stable W .
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The Fagnano curve

The Fagnano curve is the simplest example of a stable
periodic billiard path.

Claim. Let W = 012012. The corresponding tile
O(W ) is the collection of all acute triangles.
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An unstable periodic billiard path

All isosceles triangles have an unstable periodic bil-
liard path corresponding to the orbit-type W = 1020.
The corresponding tile is precisely the set of isosceles
triangles.
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The 45-45-90 triangle (1)

The 45-45-90 triangle is slightly difficult, because of
the following theorem.

Theorem (H). Right triangles do not have stable peri-
odic billiard paths.

However, Schwartz’s theorem implies that a neigh-
borhood of the 45-45-90 triangle has periodic billiard
paths.

Theorem (Schwartz). Every triangle whose largest
angle is less than 100 degrees has a periodic billiard
path.
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The 45-45-90 triangle (2)

Five tiles cover all but 6 rays leaving the 45-45-90 tri-
angle. Define the orbit types

C = (1202010)2

D1 = 201020120201020120202102010202102010

D2 =
20102010201202010201020120
20210201020102021020102010
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The 45-45-90 triangle (3)

Right triangles all have periodic billiard paths.

The remaining 4 rays are covered by four tiles. Define

E1 =
1202010201202021020102
0102021020102010201020

E2 =
120201020102012020210201020102
010202102010201020102010201020
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Almost all isosceles triangles

Let ∆x be the isosceles triangle with two angles of
measure x.

We have already proved that the set of all acute and
right isoscles triangles, {∆x : 0 < x ≤ π

4}, is con-
tained in an open set of triangles which contain pe-
riodic billiard paths. (In fact, we only needed finitely
many orbit-types.)

Consider the words

Wn = (20)n−1(21)n−1 Yn,m =
(
0(Wn)m21

)2
.

Note that Yn,m is stable, while Wn is unstable.

Theorem. For every integer n ≥ 2,

{∆x :
π

2n+ 2
< x <

π

2n
} ⊂

∞⋃
m=1

O(Yn,m)

In other words, all obtuse isosceles triangles other
than Vk = ∆ π

2k
for k > 2 lie in an open orbit-tile.
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Close up of the tiles O(Y4,m) for m = 1,2,3, . . .
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Symmetry and isosceles triangles

Proposition. Any billiard path which hits the midpoint
of the long side of an obtuse isosceles triangle twice
closes up.

Proposition. Any billiard path which starts out par-
allel to the long side of an obtuse isosceles triangle
closes up and hits the midpoint of the long side closes
up.
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The unstable orbit-types Wn

Recall our unstable words Wn = (20)n−1(21)n−1.

Proposition. The orbit type Wn describes a periodic
billiard path in each isosceles triangle ∆x with
x < π

2n−2.

Proof. The following is the unfolding for W5.
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The stable orbit-type Yn,1

Recall, Yn,1 =
(
0Wn21

)2
=
(
0(20)n−1(21)n−121

)2
.

Lemma. The stable orbit type Yn,1 describes a pe-
riodic billiard path in each isosceles triangle ∆x with
π

2n+1 ≤ x ≤
π

2n.

Proof. The following is the unfolding for a little more
than the first half of Y4,1.
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The stable orbit-type Yn,m (1)

Recall, Yn,m =
(
0(Wn)m21

)2
, where

Wn = (20)n−1(21)n−1.

Lemma. For each x with π
2n+2 < x < π

2n+1, there
is a periodic billiard path in ∆x with stable orbit-type
Yn,m for some m > 1.

Example unfolding of the first half of Y4,2.

Hitting midpoint M2 results in a periodic billiard path
with orbit type Yn,2.
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The stable orbit-type Yn,m (2)

Let x satisfy π
2n+2 < x < π

2n+1. Consider the unfold-
ingU(∆x, Yn,∞) of the infinite word Yn,∞ = 1(Wn)∞.

If we can find a horizontal beam through the unfolding
from the first triangle which hits the midpointMm, then
∆x ∈ O(Yn,m).
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Ratio graph

The following graph shows the ratio of the width of the
“beam” to the vertical displacement of the midpoints
Mi, for values of x. The relevant values are when
π

2n+2 < x < π
2n+1 (the white regions).
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This suggests that the tiles do not overlap much at
all as x → 0. Therefore, we expect that our open
neighborhood of the isosceles line gets quite thin as
x→ 0.
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Bad behavior at V2k

The only triangles that remain are the isosceles trian-
gles Vn, the triangle with two angles of measure π

2n.

Remark The triangles Vn have Veech’s lattice prop-
erty. Billiards in these polygons are very well under-
stood.

Theorem (H.-Schwartz).

• For k = 3,4,5, . . ., the triangle V2k does not lie
in the interior of an orbit tile.

• For n ≥ 3 and not a power of two, Vn does lie in
in the interior of an orbit tile.

With this theorem, the only triangles that remain are
the triangles V2k for k ≥ 3.
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Worse behavior at V2k?

Theorem (Schwartz). No open neighborhood 30-60-
90 triangle has a finite covering by orbit-tiles.

Conjecture. For each k ≥ 3, no open neighborhood
of the triangle V2k has a finite covering by orbit-tiles.

Rephrasing:
Normalize each triangle to have area one. Consider
the function L that assigns the length of the shortest
periodic billiard path to a given triangle.

The above are equivalent to the statement “L is not
locally finite at the given point.”
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Covering part of the neighborhood
of Vn

Let ∆(α, β) denote the triangle with acute angles α
and β. Let

Un(ε) =
{

∆(
π

n
+a,

π

n
+b) :

|a| < ε, |b| < ε,
and a < 0 or b < 0

}
.

Let An =
(
(20)n(10)n−11

)2
. There are longer se-

quences of words Bn and Cn, which are too long
to list here, such that the following is satisfied. (Eg.
|Bn| = 40n− 60.)

Proposition. For all n there is an ε > 0 such that
Un(ε) ⊂ O(An) ∪O(Bn) ∪O(Cn).
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The following illustrate the covering of an U4(ε) by
with tiles O(A4), O(B4) and O(C4).
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The remaining quadrant (1)

Let Nn(ε) = {∆(πn + a, πn + b) : 0 ≤ a, b < ε}.

Theorem. There is a sequence of stable words Wn,k
(with |Wn,k| = 24n + 30k2 − 68k − 20) such that
∀n ≥ 3 ∃ε > 0 such that Nn(ε) ⊂

⋃
kO(Wn,k).
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The remaining quadrant (2)

Theorem Let φn,k be the dilation which maps Vn to 0

and expands distances by

ζnk
2 with ζn := 2(n− 1) cot(π/2n) ≈ 4πn2

If n is held fixed and k → ∞ then the closure of
φn,k

(
O(Wn,k)

)
Hausdorff-converges to the convex

quadrilateral Qn with vertices

(−
1

n
,1−

1

n
); (1−

1

n
,−

1

n
); (an, an); (λnan, λnan);

where

an =
1

2
−

1

2n
; λn =

1

2
−

tan2(π/2n)

2
.

The convergence is such that any compact subset
Q′n ⊂ Qn is contained in φn,k

(
O(Wn,k)

)
for k suf-

ficiently large in comparison to n.
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