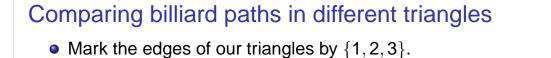
Billiards in right triangles are unstable

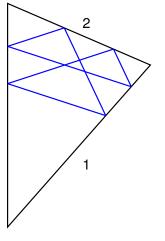
W. Patrick Hooper

Northwestern University

Geometry, Dynamics and Topology Day Eastern Illinois University October 27, 2007



• The orbit-type $\mathcal{O}(\widehat{\gamma})$ of a periodic billiard path $\widehat{\gamma}$ is the bi-infinite periodic sequence of markings corresponding to the edges hit.



3

A periodic billiard path $\hat{\gamma}$ with orbit type $\mathcal{O}(\hat{\gamma}) = \overline{123123}$.

Comparing billiard paths in different triangles

Open Question

Does every triangle have a periodic billiard path?

- Let \mathcal{T} be the space of marked triangles up to similarities preserving the markings.
- We coordinatize \mathcal{T} by the angles of the triangles:

 $\mathcal{T} = \{ (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3 \mid \alpha_1 + \alpha_2 + \alpha_3 = \pi \text{ and each } \alpha_i > 0 \}.$

- The tile of a periodic billiard path γ̂ is the subset tile(γ̂) ⊂ T consisting of all triangles Δ ∈ T with periodic billiard paths η̂ with the same orbit type as γ̂.
- The question above becomes equivalent to "Can T be covered by tiles?"

Theorem (Classification of tiles)

Let $\hat{\gamma}$ be a periodic billiard path in a triangle Δ . Then either

• tile($\hat{\gamma}$) is an open subset of \mathcal{T} , or

2 $tile(\widehat{\gamma})$ is an open subset of a rational line of the form

 $\{(\alpha_1, \alpha_2, \alpha_3) \in \mathcal{T} \mid n_1\alpha_1 + n_2\alpha_2 + n_3\alpha_3 = 0\}$

for some integers n_1 , n_2 , n_3 (not all zero).

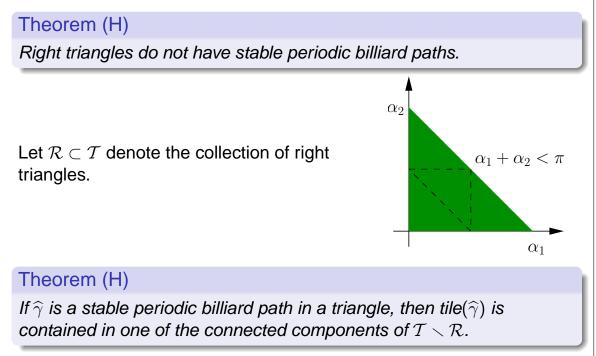
- In the first case, γ̂ is called stable. In any sufficiently small perturbation of Δ, we can find a periodic billiard path with the same orbit-type.
- Almost every triangle only has stable periodic billiard paths!
- But for example, right triangles may have unstable periodic billiard paths. Since if α₁ = π/2, then

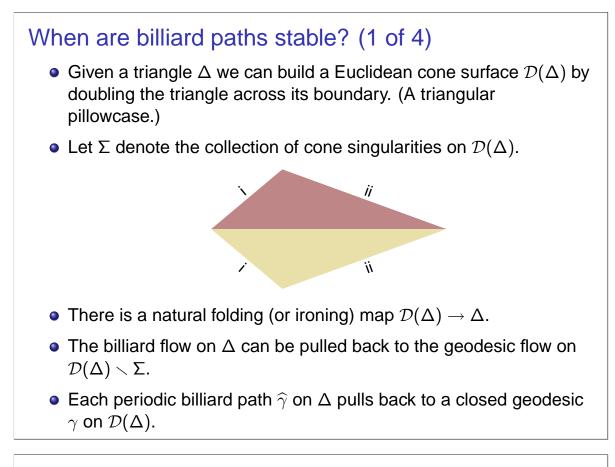
 $\alpha_1 - \alpha_2 - \alpha_3 = \mathbf{0}.$

Example of an unstable periodic billiard path γ with orbit type O(γ̂) = 1323 is unstable. By similar triangles, *tile*(γ̂) is the collection of isosceles triangles with base marked '3'. *tile*(γ̂) = {(α₁, α₂, α₃) ∈ T | α₁ - α₂ = 0}.

Theorems on stability in right triangles

The following settles a conjecture of Vorobets, Galperin, and Stepin.





When are billiard paths stable? (2 of 4)

- Let θ : $T_1 \mathbb{R}^2 \to \mathbb{R}/2\pi\mathbb{Z}$ be the function which measures angle.
- The closed 1-form dθ on T₁R² is invariant under the action of Isom₊(R²).
- It pulls back to closed 1-form on the unit tangent bundle of any locally Euclidean surface.
- If γ is a closed geodesic on a locally Euclidean surface then

$$\int_{\gamma'} d heta = 0$$

• Because $d\theta$ is closed, this is a homological invariant of the curve γ' in the unit tangent bundle.



When are billiard paths stable? (4 of 4)

Consequently, in order for a homology class
 [[x]] = n₁β'₁ + n₂β'₂ + n₃β'₃ ∈ H₁(T₁D(Δ) \ Σ, Z) to contain the derivative of a closed geodesic, it must be

$$n_1\alpha_1+n_2\alpha_2+n_3\alpha_3=0.$$

- Suppose, γ̂ is a stable periodic billiard path. Let γ be the pull back to D(Δ). Then γ' must be homologous to zero in T₁D(Δ) < Σ.
- Remark: In fact, this is a sufficient condition for stability. This can be seen by checking that all remaining conditions for a homotopy class in D(Δ) \ Σ to contain a geodesic are open conditions.

Theorem (Classification of tiles)

Let $\widehat{\gamma}$ be a periodic billiard path in a triangle Δ . Then tile($\widehat{\gamma}$) is stable iff γ' is null homologous. Otherwise, tile($\widehat{\gamma}$) is an open subset of a rational line.

Translation surfaces (1 of 2)

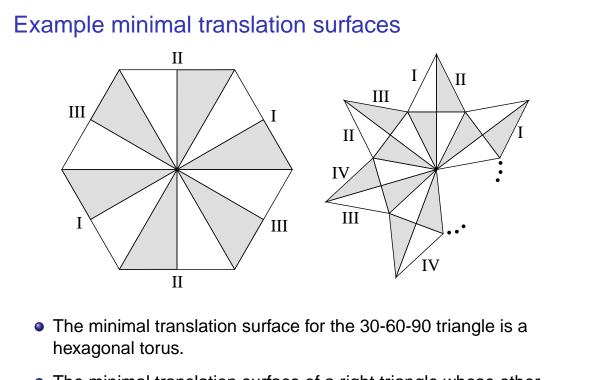
- A translation surface is a Euclidean cone surface whose cone angles are all in 2πN ∪ {∞}.
- These surfaces appear naturally from the point of view of the previous discussion.
- Consider the group homomorphism

$$\Theta: \pi_1(T_1\mathcal{D}(\Delta) \smallsetminus \Sigma) \to \mathbb{R}: [\mathbf{x}] \mapsto \int_{\mathbf{x}} d\theta.$$

- Let $\phi : T_1\mathcal{D}(\Delta) \smallsetminus \Sigma \to \mathcal{D}(\Delta) \smallsetminus \Sigma$.
- Let $G = \phi_*(\ker \Theta) \subset \pi_1(\mathcal{D}(\Delta) \smallsetminus \Sigma)$.
- A homotopy class [γ] in D(Δ) \ Σ must lie in G in order to contain a geodesic.
- The cover of D(Δ) branched over Σ associated to G is a translation surface MT(Δ).

Translation surfaces (2 of 2)

- We call $MT(\Delta)$ the minimal translation surface cover of $\mathcal{D}(\Delta)$.
- We will now describe a less technical definition of $MT(\Delta)$.
- Let *H* be the group $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ generated by r_1, r_2, r_3 .
- Let ρ : H → Isom ℝ² which sends each generator r_i to reflection in the *i*-th side of Δ.
- $MT(\Delta)$ is $\{h(\Delta) \mid h \in H\}$ with some identifications:
 - **1** Identify $h_1(\Delta)$ and $h_2(\Delta)$ along the edge *i* if $h_1 \circ h_2^{-1} = r_i$.
 - 2 Identify triangles $h_1(\Delta)$ and $h_2(\Delta)$ if $\rho(h_1 \circ h_2^{-1})$ is a translation.



• The minimal translation surface of a right triangle whose other angles are not rational multiples of π is an infinite union of rombi.

Closed geodesics on translation surfaces

- Every closed geodesic on a Euclidean cone surface D(Δ) lifts to the minimal translation surface cover of MT(Δ).
- The direction map $\theta : T_1 \mathbb{R}^2 \to \mathbb{R}/2\pi\mathbb{Z}$ lifts to a map $\theta : T_1 MT(\Delta) \to \mathbb{R}/2\pi\mathbb{Z}$.
- The direction map θ is invariant under the geodesic flow. Thus, closed geodesics on MT(Δ) never intersect.
- Moreover, two geodesics which travel in the same direction can not intersect.
- This is the main idea behind the proof of

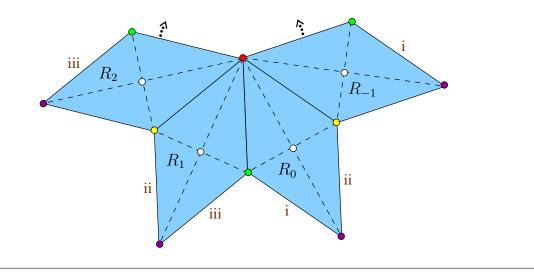
Theorem

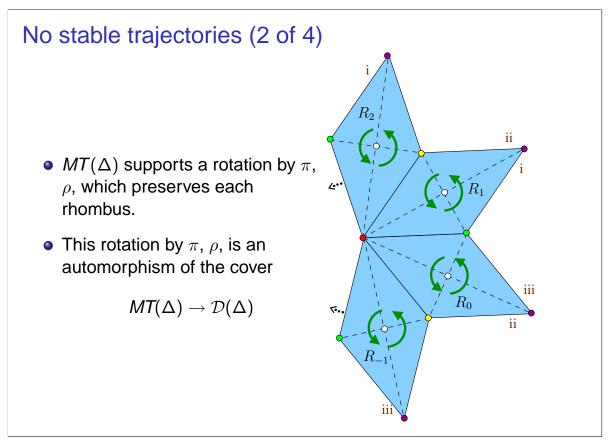
Right triangles don't have stable periodic billiard paths.

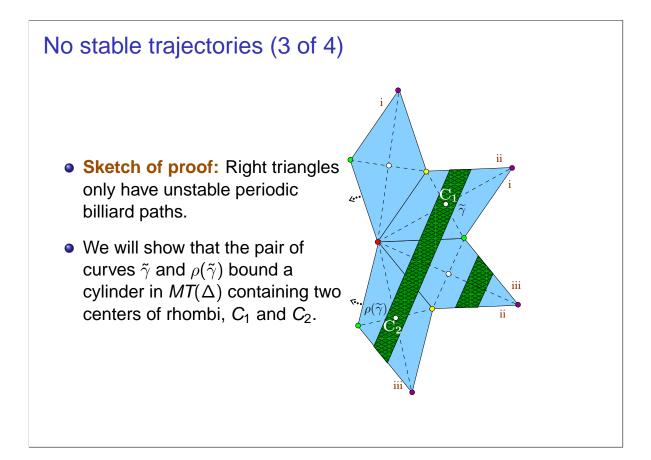
We will now discuss the proof.

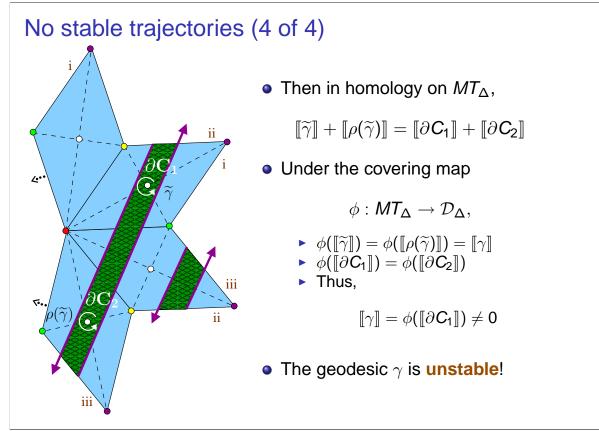
No stable trajectories (1 of 4)

- It is sufficient to prove that a right triangle Δ whose other angles are not rational multiples of π has no stable periodic billiard paths.
- A periodic billiard path $\hat{\gamma}$ in Δ lifts to a closed geodesic γ in $\mathcal{D}(\Delta)$.
- γ lifts to a closed geodesic $\tilde{\gamma}$ in $MT(\Delta)$.

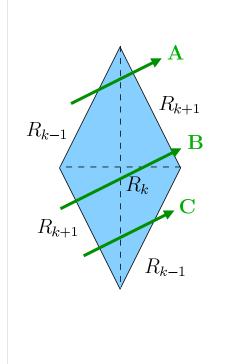








Finding the cylinder (1 of 3)

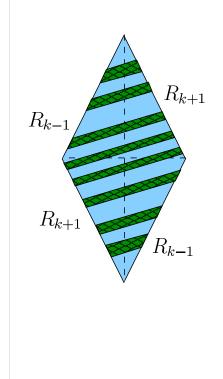


Claim 1: $\tilde{\gamma} \cup \rho(\tilde{\gamma})$ intersects each edge of each rhombus an even number of times.

Proof:

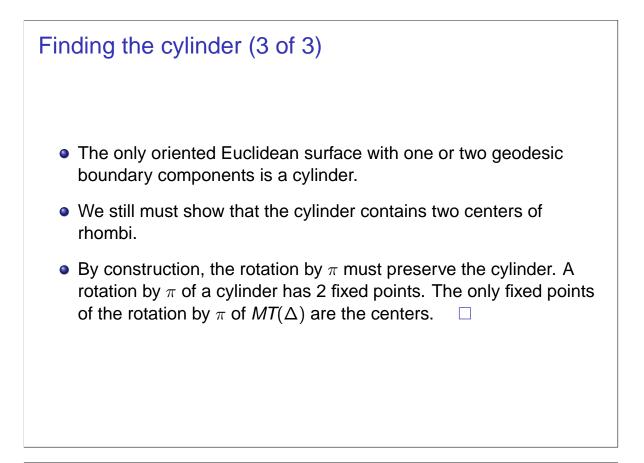
- Fixing the direction γ travels, there are only 3 possible ways γ can cross each rhombus *R_k*.
- The claim is equivalent to showing that the number of type
 A crossings of γ equals the number of type C crossings of γ.
- But, γ̃ must close up. So, each time it passes from R_{k+1} to R_{k-1} it must later pass from R_{k-1} to R_{k+1}.

Finding the cylinder (2 of 3)



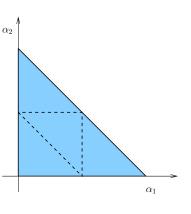
Claim 2: $\tilde{\gamma} \cup \rho(\tilde{\gamma})$ disconnects $MT(\Delta)$. At least one component contains no singularities with infinite cone angle. **Proof:**

- The colorings of each rhombus agree along the boundaries of the rhombi. So, the green and blue components are distinct.



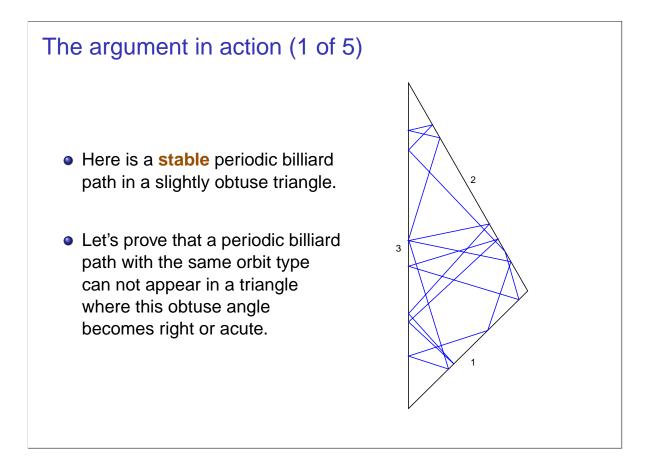
The generalization

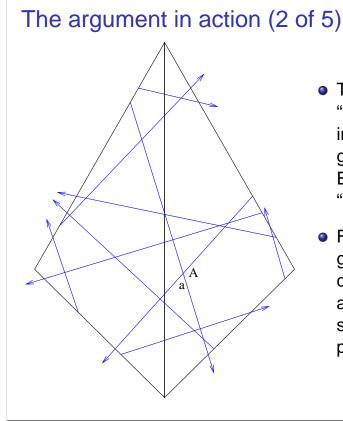
The right triangles consist of three lines l₁, l₂, and l₃ in the space of triangles T.



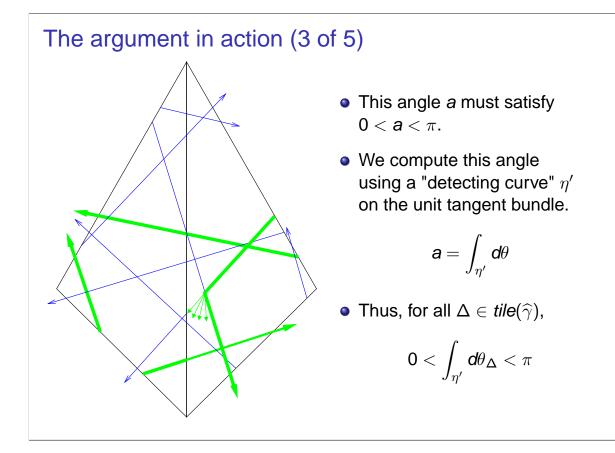
Theorem (H)

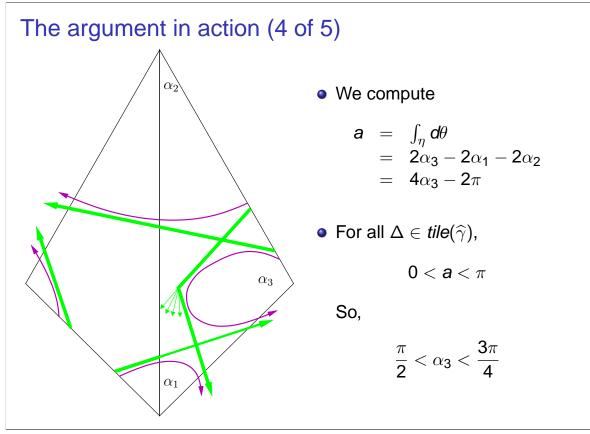
If $\widehat{\gamma}$ is a **stable** periodic billiard path in a triangle, then tile($\widehat{\gamma}$) is contained in one of the four components of $\mathcal{T} \setminus (\ell_1 \cup \ell_2 \cup \ell_3)$.





- The proof follows from the "general principle" that intersections between geodesics on locally Euclidean surfaces are "essential."
- For every triangle Δ with a geodesic in this homotopy class on D(Δ), we can find an intersection A with similar topological properties.





The argument in action (5 of 5)

Iterating over all intersections gives a convex bounding box for the tile.

