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Abstract. This article investigates a family of translation surfaces whose Veech groups
are lattices closely related to triangle groups. Many of these examples were discovered by
Bouw and Möller through non-elementary means, and lack a simple elementary description.
This article describes many of the Bouw-Möller examples by gluing together polygons in
simple ways, and discovers some closely related new examples. We connect these examples
to the principal eigenvectors of grid graphs, and provide analogous constructions of infinite
genus translation surfaces with the lattice property.

A Teichmüller curve is a totally geodesic embedding of a complete two-dimensional hyper-
bolic orbifold into the moduli space of surfaces genus g equipped with the Teichmüller metric.
Veech found the first examples of these objects [Vee89], and found Teichmüller curves in each
genus g ≥ 2. Since then, there has been interest in finding more examples and classifying
these objects. (See [KS00], [McM03], [Cal04] and [McM06] for instance.) Teichmüller curves
are naturally associated to flat structures and translation surfaces with the lattice property.
See section 1.1.

Relatively recently, Bouw and Möller found Teichmüller curves isometric to H2/Γ for Γ a
hyperbolic (m,n,∞) triangle group with m < n < ∞ [BM06]. Their examples generalize
the lists found by Veech [Vee89] and Ward [War98].

The Bouw-Möller examples were found using techniques from algebraic geometry and
Hodge theory. The purpose of this article is to provide a more elementary description of
some of the Bouw-Möller examples as flat structures built by gluing together polygons. We
achieve this goal in two different ways. We first construct the surfaces the surfaces as a
union of rectangles. We give a second description of these surfaces as a union of semiregular
polygons, 2n-gons invariant under the dihedral group of order 2n, D2n ⊂ Isom(R2).

We only provide a description of the Bouw-Möller examples corresponding to m and n
not both even. The case of m and n both even which appears in [BM06] is not treated here.
However, for m and n both even, we do provide related examples of Teichmüller curves
isometric to H2/Γ with Γ index two inside the (m,n,∞) triangle group. These examples
appear to be new as we note in corollary 18.

As a secondary purpose, we describe an infinite list of Teichmüller curves for infinite
genus surfaces. This generalizes the example found in [Hoo07] and also the example found
by Hubert and Weiss [HW08].

Section 1 states our results after providing the necessary background. In section 1.2,
we define the cylinder intersection graph, which keeps track of combinatorial data coming
from a decomposition of a translation surface into rectangles. In section 1.3, we provide
a description of these surfaces in terms of the cylinder intersection graph, which turns out
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to be grid graphs. Grid graphs are rectangular subgraphs of the usual square tiling of the
plane. We provide our second description of these surfaces in terms of semiregular polygons
in section 1.4.

In section 2, we prove that these finite surfaces have the lattice property. In section 3, we
see why the geometry of these flat structures must correspond to the principal eigenvector
of the cylinder intersection graph. We use this viewpoint to construct some infinite genus
surfaces with the lattice property in section 3.2. We have devoted section 6 to a discussion
of analogs of the decomposition into semiregular polygons which hold in these infinite genus
cases.

The remainder of the paper is devoted to the more tedious proofs. In section 4, we prove
that the translation surfaces described by a decomposition into rectangles and the surfaces
described by a decomposition into semiregular polygons are the same up to the action of an
element of the affine group. In section 5, we show that when n and m are not both even
that our surfaces are the same as the surfaces of Bouw and Möller.

Acknowledgements. Many helpful conversations occured at MSRI’s workshop on “Topics
in Teichmüller Theory and Kleinian Groups” held in November, 2007. The author would
like to thank Matt Bainbridge, Pascal Hubert, Martin Möller, Yaroslav Vorobets, and Barak
Weiss for these helpful conversations. The author would especially like to thank John Smillie
for realizing that a relatively simple presentation of these surfaces should be possible.

1. Background and statement of results

1.1. Background. We consider a polygon to be an equivalence class of polygonal subsets of
R2, where two polygonal subsets are equivalent if they differ by a translation or a rotation
by π. A polygon P inherits the notion of direction from R2. Our notion of direction is a
fibration dir : T1P → R/πZ. The map θ measures Euclidean angle modulo π of a vector
compared to the horizontal.

A flat structure is union of polygons with all edges identified in pairs either by translations
or rotations by π. Thus a flat structure is a Euclidean cone surface, all of whose cone angles
are multiples of π, and whose holonomy group is contained in the group of translations and
rotations by π of the plane. See [MT02] for more details on flat structures. A flat structure
is called a translation surface when all of its cone angles are multiples of 2π, and when the
holonomy group is contained in the group of translations.

Typically, flat structures and translation surfaces are taken to be closed surfaces (compact
surfaces without boundary). However, we will also be interested in the infinite genus case.
Our infinite genus surfaces will be non-compact and without boundary.

There is a natural action of GL(2,R)/ ± I on the space translation surfaces and flat
structures. Simply consider a flat structure as a union of polygons, S =

⋃
i∈Λ Pi, and

consider A ∈ GL(2,R)/ ± I to be acting affinely on the plane. Then A(S) =
⋃
i∈Λ A(Pi)

with edges identified in the same way as in S. (Note that −I acts trivially on polygons
in the sense defined above, which is why we consider the action of GL(2,R)/ ± I.) We
abuse notation by using A both for the element A ∈ GL(2,R)/± I and as the natural map
A : S → A(S) defined above. The image of {A(S) | A ∈ PSL(2,R)} in Teichmüller space
under uniformization is known as a Teichmüller disk of S, and is totally geodesic in the
Teichmüller metric.
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Given a flat structure S, we say that A ∈ GL(2,R)/ ± I is in the Veech group of S,
A ∈ V (S), if there is a direction preserving isometry ιA : A(S) → S. The composition
ιA ◦A : S → S is known as an affine automorphism of S, and the set of all such compositions
is known as the affine automorphism group of S, Aff(S). We say the derivative D(ιA◦A) = A,
because ιA◦A acts as A on the tangent space to a non-singular point of S. Thus, D : Aff(S)→
GL(2,R)/ ± I is a group homomorphism which maps Aff(S) onto the Veech group V (S).
Assuming S has finite area, V (S) is contained in the group of matrices of determinant ±1,
PSL±(2,R), since area is an isometry invariant. Let V +(S) = V (S) ∩ PSL(2,R) denote the
subgroup of matrices of determinant 1. There is a totally geodesic immersion of H2/V +(S)
into moduli space, obtained as the image of the Teichmüller disk under the natural map
from Teichmüller space to moduli space. We will be especially interested in the case when
V (S) is a lattice in PSL±(2,R). In this case, we say that S has the lattice property, and the
image of H2/V +(S) in moduli space is known as a Teichmüller curve. We will primarily be
interested in showing that certain flat structures have the lattice property.

A saddle connection is a geodesic segment joining two singularities (cone points) in a
flat structure S. A cylinder decomposition in the direction θ is a decomposition of S into
maximal closed Euclidean cylinders (isometric to R/cZ× [0, w], where c is the circumference
and w is the width) such that the holonomy vector around each cylinder is parallel to the
direction θ. Cylinder decompositions are one of the most useful and fundamental tools in the
subject. For example, the Thurston-Veech construction uses pairs of cylinder decompositions
each preserved by affine automorphisms whose derivatives are parabolic to generate pseudo-
Anosov automorphisms [Thu88] [Vee89].

1.2. Cylinder graphs. Our philosophy will utilize a consequence of work of Veech. The
lattice property implies the existence of many cylinder decompositions, for the following
reason. Teichmüller curves must contain cusps [Vee89]. A cusp corresponds to a conjugacy
class of parabolics in the Veech group. Each parabolic preserves a cylinder decomposition in
the eigendirection. See [Vee89] and proposition 14 of §2.3.

In this section and whenever we discuss the cylinder intersection graph, we will assume
S is a translation surface. Our surface S will have a horizontal cylinder decomposition
and a vertical cylinder decomposition. Let A = {αi}i∈Λ and B = {βi}i∈Λ be the sets of
maximal horizontal and vertical cylinders respectively. (In the general case, A and B may
have different cardinality and so will need to be indexed by different sets.)

We will associate a cylinder intersection graph G to our cylinder decompositions. Our
nodes are the maximal cylinders in the horizontal and vertical directions, A ∪ B. Join an
edge between αi and βj for every intersection between the two cylinders. Therefore, each
edge represents a rectangle with horizontal and vertical sides in our surface. Let E denote
the collection of edges (or rectangles). Define the maps α : E → A and β : E → B to be the
maps which send an edge αiβj to the nodes αi and βj respectively.

Remark 1 (Equivalence to a 2-colored graph). A 2-colored graph, is a graph equipped with
a coloring function C from the set of nodes, V, to {0, 1}, with the property that for any
two adjancent nodes, x, y ∈ V, we have C(x) 6= C(y). The information provided above is
equivalent to a 2-colored graph. Simply define C(x) = 0 if x ∈ α(E) = A and C(x) = 1 if
x ∈ β(E) = B. Conversely, the maps α, β : E → V as well as the decomposition V = A t B
are determined by the coloring function.



4 W. PATRICK HOOPER

We also would like to know how to piece together the rectangles to form our surface. This
is determined by knowing when one rectangle lies above another, and when one rectangle
lies to the right of another. Let e : E → E be the permutation which sends a rectangle to
the rectangle which lies to the right (or to the east), and let n : E → E be the permutation
which sends a rectangle to the rectangle which lies above (or to the north). Note that the
rectangle e(e) must lie in the same horizontal cylinder as the rectangle e. Thus, we have
α ◦ e = α and β ◦ n = β. A horizontal cylinder corresponds to an orbit under e. Thus, for
each a ∈ A, e must act transitively on α−1(a). Similarly, n must act transitively on β−1(b)
for each b ∈ B.

The data consisting of a two-colored graph G and the edge permutations e and n determine
the combinatorics of our surface as a union of rectangles. To determine the geometry of the
surface, it is sufficient to know the width of each cylinder.

1.3. Lattice examples. We will now indicate our approach to the Bouw-Möller examples.
Consider the (m,n,∞) triangle group in PSL(2,R), Γ(m,n,∞), as generated by the elements

(1) P =

[
1 a+ b
0 1

]
and R =

[
0 −1
1 −b

]
where a = 2 cos π

m
and b = 2 cos π

n
. These matrices satisfy the relations Rn = (RP )m = −I.

We will use S to denote a flat structure, and φ and ρ will indicate affine automorphisms
S → S with Dφ = P and Dρ = R.
P is a parabolic with a horizontal eigenvector, so Veech’s proposition implies that in

the closed case our surface has a horizontal cylinder decomposition, Am,n. The horizontal
direction is sent to the vertical direction by R, so the vertical direction must admit a cylinder
decomposition Bm,n as well. The affine automorphism ρ sends maximal horizontal cylinders
to maximal vertical cylinders. We will assume that the induced action on maximal cylinders
preserves indices. That is, ρ : αλ 7→ βλ for all λ ∈ Λ. Moreover, R was chosen so that the
widths and circumferences of these cylinders are preserved by ρ. We will let wλ denote the
width of the cylinders αλ and βλ.

Let Λ = {(i, j) ∈ Z2 | 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1}. We use Λ for the indexing sets
of Am,n and Bm,n. Let Gm,n be the graph with nodes Am,n∪Bm,n formed by joining an edges
according to the usual notion adjacency in Z2. That is, we join an edge between αi,j and
βi′,j′ if and only if (i− i′)2 + (j− j′)2 = 1 for all (i, j), (i′, j′) ∈ Λ. Note that this makes Gm,n
disconnected. Gm,n has two components, each of which is the (m− 1, n− 1) grid graph. See
figure 1.

The counter-clockwise ordering of indices adjacent to (i, j) is the cyclic ordering

(i+ 1, j)→ (i, j + 1)→ (i− 1, j)→ (i, j − 1)→ (i+ 1, j).

And the clockwise ordering is the reverse. If any indices in the cyclic order are not in Λ,
they are skipped by the ordering. We will follow the following convention to determine the
permutations e and n. We number this convention for later reference.

Convention 2. The map e : E → E is determined from a cyclic ordering of the edges with
αi,j as an endpoint. As in figure 1, we order edges with endpoint αi,j counter-clockwise when
j is odd and clockwise when j is even. Similarly n : E → E is determined by a cyclic ordering
of edges with βi,j as an endpoint. We follow the opposite rule with βi,j. We order the edges
with endpoint βi,j clockwise when j is odd and counter-clockwise when j is even.
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Figure 1. The graph G4,5. The edge permutation e is indicated by the arrows
surrounding the α vertices, and n is indicated by the arrows surrounding the
β vertices.

Theorem 3 (Lattice surfaces as a union of rectangles). Let Sm,n be the two-component
translation surface determined by the graph Gm,n, the maps e, n : E → E as described in
convention 2, and the cylinder widths

wi,j = sin(
iπ

m
) sin(

jπ

n
).

Sm,n has a parabolic automorphism φ, with Dφ = P , which acts as a single Dehn twist in
each horizontal cylinder αi,j. Sm,n has an affine automorphism ρ, with Dρ = R, which sends
each cylinder αi,j to βi,j.

Note that the assignment of the number wi,j to each node αi,j and βi,j is a principal
eigenvector of either component of the graph Gm,n. (A principal eigenvector of a graph is an
eigenvector corresponding to the eigenvalue of largest magnitude.) We explore why this is
true more deeply in section 3.1. See [LM95] for background on eigenvalues and eigenvectors
of graphs.

Since φ preserves the two components of Sm,n and ρ swaps them, we have the following.

Corollary 4. Each component of Sm,n has the lattice property. The Veech group of each com-
ponent contains the index two subgroup of the (m,n,∞) triangle group given by 〈P,R2, RPR〉.

Remark 5 (Comparison to Bouw-Möller). We will show in section 5 that these surfaces
Sm,n for m and n not both even are precisely the surfaces found by Bouw and Möller [BM06].
However when m and n are both even, we will see in corollary 18 that these surfaces do not
appear in [BM06].

The author views the above theorem and corollary as the main point of this discussion. For
completeness, we will also compute the complete Veech groups of the individual components.
Let S1

m,n denote the component of Sm,n which contains the cylinder α1,1, and let S2
m,n denote

the other component. We will use S∗m,n to denote a component of Sm,n when the particular
choice is irrelevant. The following two propositions are proved in section 2.2.
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Proposition 6. If m or n is odd, there is a direction preserving isometry ζ : S1
m,n → S2

m,n.

Note that this proposition implies that when m or n is odd, we have R in the Veech groups
of S1

m,n and S2
m,n. This is because we can compose ρ with ζ or ζ−1.

It also turns out that the surfaces Sm,n and Sn,m are essentially the same.

Proposition 7 (Swapping m and n). Let Q be the rotation by π
2
, Q =

[
0 −1
1 0

]
. There is

an affine map ηm,n : S1
m,n → S2

n,m with Dη = Q.

It also follows that the map η−1
n,m : S2

m,n → S1
n,m with derivative −Q. Combining the two

propositions, we see that when m is odd Q is in the Veech group of S∗m,m. When m is even, we

see RQ ∈ V (S1
m,m) while RQ−1 ∈ V (S2

m,m), since the affine automorphism ρ : Sm,m → Sm,m
with Dρ = R interchanges the two components.

These arguments turn out to describe the full orientation preserving Veech group of each
components Sm,n. We provide a careful description of these Veech groups in section 2.5.

Remark 8 (Orientation reversing elements). It follows from proposition 11 (below) that the

orientation reversing matrix

[
−1 b
0 1

]
, for b = 2 cos π

n
, lies in the Veech group of each

component of S∗m,n.

1.4. Decomposition into semiregular polygons. The (a, b)-semiregular 2n-gon is the
2n-gon whose edge vectors (oriented counterclockwise) are given by

vk =

{
a(cos iπ

n
, sin iπ

n
) if i is even

b(cos iπ
n
, sin iπ

n
) if i is odd

for i = 0, . . . , 2n−1. Denote this 2n-gon by Pn(a, b). We restrict to the cases where a, b ≥ 0,
but a 6= 0 or b 6= 0. In the case where one of a or b is zero, Pn(a, b) degenerates to a regular
n-gon. We call the edges of Pn(a, b) of length a the even edges and the edges of length b the
odd edges.

Figure 2. The semiregular polygon P5(1, 2).

Fix m and n. Define the polygons P (k) for k = 0, . . . ,m− 1 by

(2) P (k) =


Pn(sin (k+1)π

m
, sin kπ

m
) if n is odd

Pn(sin kπ
m
, sin (k+1)π

m
) if n is even and k is even

Pn(sin (k+1)π
m

, sin kπ
m

) if n is even and k is odd.

We form a surface by identifying the edges of the polygons in pairs. For k odd, we identify
the even sides of P (k) with the opposite side of P (k+ 1), and identify the odd sides of P (k)
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with the opposite side of P (k − 1). See examples in figures 3 and 4. Similarly, define the
polygons P ′(k) for k = 0, . . . ,m− 1 by

P ′(k) =


Pn(sin kπ

m
, sin (k+1)π

m
) if n is odd

Pn(sin (k+1)π
m

, sin kπ
m

) if n is even and k is even

Pn(sin kπ
m
, sin (k+1)π

m
) if n is even and k is odd.

For i odd, we identify the even sides of P ′(k) with the opposite side of P ′(i−1), and identify
the odd sides of P ′(k) with the opposite side of P ′(k + 1). Call the disjoint union of these
two surfaces S ′m,n.

Theorem 9 (Semiregular polygon decomposition). Let M =

[
csc π

n
− cot π

n
0 1

]
∈ GL(2,R).

There is a direction preserving isometry M(Sm,n)→ S ′m,n.

The proof of this statement resides in section 4.

Figure 3. These polygons make up one component of the surface S ′6,4. These
are the polygons P (0), P (1), P (2), P (3), P (4) and P (5) from left to right.

Figure 4. These polygons make up one component of the surface S ′4,5. These
are the polygons P (0), P (1), P (2) and P (3) from left to right.

The following proposition will be used to in the proof that we have found all the elements of
the Veech group V +(S∗m,n). We use S ′∗m,n to denote a component of S ′m,n when the particular
component doesn’t matter.

Proposition 10 (Orthogonal part of the Veech group). When m or n is odd, V +(S ′∗m,n) ∩
PSO(2,R) is a cyclic group of order n. When both m and n are even, V +(S ′∗m,n)∩PSO(2,R)
is a cyclic group of order n/2.

Proof. For notational ease, consider the case ∗ = 1. The same argument will hold for ∗ = 2.
An element of V +(S ′1m,n) ∩ PSO(2,R) must correspond to an affine automorphism which

permutes the shortest saddle connections of S ′1m,n. The shortest saddle connections of S ′1m,n are
the edges of the regular n-gons P (0) and P (m−1). It follows that any orientation preserving
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affine automorphism from S ′1m,n must send P (0) to either P (0) or P (m− 1). Moreover, it is
not difficult to see that any isometry from P (0) to P (0) or P (m − 1) extends to an affine
automorpism of S ′1m,n. Note that if m or n is odd, then P (0) differs from P (m − 1) by a

rotation by π/n. In this case a rotation by π/n generates V +(S ′1m,n) ∩ PSO(2,R). However,
when n and m are even, P (m− 1) is a translate of P (0). Thus a rotation by 2π/n generates
V +(S ′1m,n) ∩ PSO(2,R). �

It is also worth noting that there are orientation reversing elements of the Veech group.

Proposition 11 (Orientation reversing). The matrix T =

[
0 1
1 0

]
is an element of the

Veech group of S ′m,n, which preserves each component. Thus M−1 ◦ T ◦M =

[
−1 b
0 1

]
∈

V (S∗m,n), for b = 2 cos π
n

.

Proof. Each semi-regular polygon as a subset of R2 is preserved by T up to translation.
Moreover, this transformation respects the gluing of S ′m,n. Thus, this transformation induces

an affine automorphism. It follows from theorem 9 that M−1 ◦ T ◦M ∈ V (S∗m,n). �

2. Combinatorics and affine automorphisms

Recall from section 1.2, that a translation surface with horizontal and vertical cylinder
decompositions is determined by the following data.

• A two colored graph G with vertex set V = A t B and edge set E . The two coloring
is equivalent to the existence of surjective functions α : E → A and β : E → B, which
send each edge to an endpoint of that edge.
• Permutations e, n : E → E satisfying α ◦ e = α and β ◦ n = β. Also, e must act

transitively on α−1(a) for a ∈ A, and n must act transitively on β−1(b) for b ∈ B.
• A width function w : V → R>0.

Moreover, the surface is uniquely determined by this data provided the corresonding hori-
zontal and vertical cylinder decompositions are maximal. Let S[G, (α, β), (e, n), w]. denote
the translation surface determined by the provided data.

In the next subsection, we indicate how to recover geometry from this information. In
subsection 2.2, we note that the dihedral group of order 8 act nicely on this data.

2.1. Recovering geometry from the graph. We mentioned in the previous section that
the cylinder intersection graph G, which is a 2-colored graph, together with the permutations
n, e : E → E determine the combinatorics of our surface as decomposed into rectangles. We
will make this more concrete.

Let S = S[G, (α, β), (e, n), w] as above. In the general case, the sets of nodes A = α(E)
and B = β(E) may have different indexing sets. Let A = {αi : i ∈ Λa} and B = {βi : i ∈ Λb}.
For each e = αiβj ∈ E let Re be the rectangle [0, w(βj)] × [0, w(αi)] ⊂ R2. We recover S
from the gluing of disjoint rectangles

S =
⊔
e∈E

Re

/
∼,

where ∼ identifies the right side of Re to the left side of Re(e) for all e ∈ E and identifies the
top side of Re to the bottom side of Rn(e) for all e ∈ E .
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We include the following as an indication of how to detect the cone singularities from the
cylinder intersection graph.

Proposition 12. Let e ∈ E. Let p(e) denote the period of e under the commutator map
[e, n] = e ◦ n ◦ e−1 ◦ n−1 : E → E. The cone angle at the lower left vertex of the rectangle Re

is 2πp(e). Moreover, if e0, e1, . . . ∈ E is the orbit of e under [α, β] then all lower left vertices
of the rectangles Re0 , Re1 , . . . represent the same point on our surface.

We say a point is regular if the cone angle at the point is 2π. The proposition implies that
the lower left vertex of Re is regular if and only if e is fixed by [e, n].

Proof. Define V−−(e), V+−(e), V−+(e), and V++(e) to be the lower left, lower right, upper
left, and upper right vertices of the rectangle corresponding to an edge e ∈ E . The gluing ∼
above implies that we have the following identifications of vertices.

V+−(e) = V−−
(
e(e)) V++(e) = V−+

(
e(e))

V++(e) = V+−
(
n(e)) V−+(e) = V−−

(
n(e))

In fact, these are all the identifications of vertices. Hence, the sequence of vertices of rectan-
gles V−−(e), V−+(n−1(e)), V++(e−1 ◦ n−1(e)), V+−(n ◦ e−1 ◦ n−1(e)), V−−(e ◦ n ◦ e−1 ◦ n−1(e))
are all identified by ∼ and this corresponds to moving clockwise around the image of the
point V−−(e) on our surface. �

2.2. Cylinder intersection graphs and the dihedral group D8. The dihedral group of
order 8, D8, acts on the plane in a way that preserves the set of directions {horizontal, vertical}.
In particular, if S is a translation surface with horizontal and vertical cylinder decomposi-
tions and if A ∈ D8, then the map A : S → A(S) preserves the collection of all maximal
horizontal and vertical cylinders. Thus, there is an action of D8 on the data associated to the
cylinder intersection graph. We record the action below. The proof is simple combinatorics
and is left to the reader.

Proposition 13 (Action of D8). Let Q =

[
0 −1
1 0

]
be rotation by π

2
and F =

[
1 0
0 −1

]
be a reflection (flip) in the x-axis.

• Q
(
S[G, (α, β), (e, n), w]

)
= S[G, (β, α), (n−1, e), w], and

• F
(
S[G, (α, β), (e, n), w]

)
= S[G, (α, β), (e, n−1), w].

• −I
(
S[G, (α, β), (e, n), w]

)
= S[G, (α, β), (e−1, n−1), w].

For instance, checking that there is an affine map between translation surfaces η : S →
S ′ with Dη = Q and S = [G, (α, β), (e, n), w] and S ′ = [G ′, (α′, β′), (e′, n), w′] reduces to
a statement about a graph isomorphism. (Assuming our horizontal and vertical cylinder
decompositions are maximal.) There is such an η if and only if there is a graph isomorphism
q : G → G ′ such that

(1) β′ ◦ q = q ◦ α and α′ ◦ q = q ◦ β.
(2) n′ ◦ q = q ◦ e and e′ ◦ q = q ◦ n−1.
(3) w′ ◦ q = w.

Indeed, such a q describes the action of an affine map with derivative Q on the sets of
horizontal and vertical cylinders and the rectangles of intersection.

We now apply this to a few problems in our situation. We prove propositions 7 and 6. We
use G1

m,n (resp. G2
m,n) to denote the connected component of Gm,n containing the node α1,1

(resp. β1,1).
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Proof of proposition 7. We will show that there is an affine map η : S1
m,n → S2

n,m with
Dη = Q. As in the paragraph above, such an η corresponds to a graph isomorphism
q : G1

m,n → G2
n,m. We consider the map q determined by the following action on nodes as

follows.

q(αi,j) = βj,i for i+ j ≡ 0 (mod 2) and q(βi,j) = αj,i for i+ j ≡ 1 (mod 2)

It is a simple check that q satisfies the statements 1-3 above this proof. Thus q induces an
affine map η : S1

m,n → S2
n,m with Dη = Q. �

Proof of proposition 6. We prove the proposition in the case of m odd. The case n even
follows similarly. We will show that there is an affine map η : S1

m,n → S2
m,n with Dη = −I.

This is a direction preserving isometry. Consider the map q : G1
m,n → G2

m,n defined by

q(αi,j) = αm−i,j for i+ j ≡ 0 (mod 2) and q(βi,j) = βm−j,i for i+ j ≡ 1 (mod 2)

We have that

(1) α ◦ q = q ◦ α and β ◦ q = q ◦ β.
(2) e−1 ◦ q = q ◦ e and n−1 ◦ q = q ◦ n.
(3) w ◦ q = w.

Thus by proposition 13, q extends to a affine map η : S1
m,n → S2

m,n with Dη = −I. �

2.3. Detecting affine automorphisms via cylinders. A foundational argument of Veech
gave a necessary and sufficient criterion for a parabolic to be in the Veech group. Recall, the
modulus of a cylinder is the ratio width

circumference
.

Proposition 14 (Veech [Vee89]). Let S be a closed translation surface. Then there is a
parabolic with eigendirection θ in the Veech group V (S) if and only if the following conditions
are satisfied.

• There is a cylinder decomposition of S in the direction θ.
• There is a d 6= 0 such that dm ∈ Z for each modulus m of a cylinder in the decom-

position.

A few remarks are in order about this proposition from our point of view.

(1) Veech’s argument is effective. If the cylinders are horizontal, then

[
1 d
0 1

]
is in the

Veech group.
(2) A powerful feature of this criterion is that it is local to the cylinders, in the sense

that it only involves only geometric data about the cylinders.
(3) With the closed condition dropped (ie. in the infinite case), the “if” portion of the

proposition still holds.

Now we will provide a criterion for the existence of a affine automorphism of a translation
surface S which sends a horizontal maximal cylinder decomposition A to a vertical maximal
cylinder decomposition B.

Lemma 15. Let S be a translation surface admitting distinct maximal horizontal and vertical
cylinder decompositions A and B as above. Let Σa and Σb be the set of saddle connections in
the horizontal and vertical directions respectively. Assume A ∈ GL(2,R) sends the horizontal
direction to the vertical direction. Then A is in the Veech group of S if and only if the
following holds.
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(1) The sets A and B have the same cardinality, as do the sets Σa and Σb.
(2) There are indexings A = {αi}i∈Λ, B = {βi}i∈Λ, Σa = {σaj }j∈Λ′ and Σb = {σbj}j∈Λ′

such that the following holds.
(a) There is a direction preserving isometry φi : A(αi)→ βi.
(b) For each σaj ⊂ ∂αi we also have σbj ⊂ ∂βi, and φi : A(σaj ) 7→ σbj .

This criterion is “local” in the sense that it only depends on the geometric information
about the cylinders and gluing data between cylinders along saddle connections.

Proof. If A is in the Veech group, then there is an affine automorphism φ with Dφ = A.
Choose arbitrary indexings A = {αi}i∈Λ and Σa = {σaj }j∈Λ′ . Then use the indexings βi =

φ(αi) and σbj = φ(σaj ). The restriction maps φi = φ|αi satisfy conditions (a) and (b).
Conversely, suppose conditions (1) and (2) are satisfied. We may rebuild S (up to direction

preserving isometry) from the cylinders A by gluing cylinders along saddle connections in Σa

as labeled. Similarly, we can recover S from the cylinders B and the saddle connections Σb.
The conditions (a) and (b) imply that the isometries φi respect the gluing relations. Thus,
there is a direction preserving isometry φ : S → S such that φi = φ|αi . �

2.4. Local conditions in the square grid. The point of this section is to prove theorem
3 from a local point of view via proposition 14 and lemma 15.

We assume that our surface S has horizontal and vertical maximal cylinder decompositions
A and B. We will concentrate on the local picture surrounding the horizontal cylinder α0 in
the left side of figure 5 and the local picture around β0 on the right side. This figure shows
a portion of the cylinder intersection graph G and also some of the images of edges under
the edge permutations e and n. As in §1.3 we assume that that for each i, αi and βi have
the same circumference and width. Let wi denote the width of the cylinders αi and βi. Let

R =

[
0 −1
1 −b

]
for some b ≥ 0. (This is the same R that appears in equation 1 of §1.3).

We will check that under certain conditions, there is a direction preserving isometry ιR :
R(α0)→ β0. Moreover, ιR will preserve a natural labeling of saddle connections as required
by lemma 15.

Figure 5. The local structure of the graph G near α0. Arrows surrounding
the α∗ vertices determine a portion of the action of e : E → E . Likewise arrows
surrounding the β∗ determine a portion of n : E → E . The rest of the structure
of the graph and these maps may be arbitrary.

Lemma 16. As above, assume that we have the local picture of figure 5. We assume all
our widths are non-negative, but allow any of the widths other than w0 to be zero. Let
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R =

[
0 −1
1 −b

]
with b ∈ R non-negative. If in addition w6 + w8 = bw0, then there is a

direction preserving isometry ιR : R(α0) → β0 which sends saddle connections in ∂α0 to
saddle connections in ∂β0 according to the rule ιR : ∂α0∩∂αi 7→ ∂β0∩∂βi for i ∈ {1, 2, 3, 4}.

Figure 6. From left to right, these are the cylinders α0, R(α0), and β0. The
dots denote singularities, which have been given names. The saddle connec-
tions are labeled as common boundaries of two cylinders.

Proof. The cylinders α0 and β0 have four saddle connections in their boundary as in figure
6. The singular points are indicated in the figure and given names. The unmarked vertices
of rectangles are non-singular. This can be determined by using proposition 12 to decide
which vertices of rectangles are singularities.

The choice of R guarantees that the width and circumference of α0 and R(α0) are the
same. Further, β0 has the same width and circumference as α0. Since β0 and R(α0) are both
vertical cylinders, there is a direction preserving isometry between the two. In fact, we may
choose the direction preserving isometry ιR : R(α0)→ β0 so that it sends R(W ) to W ′. We
will check that this map ιR also sends R(X) 7→ X ′, R(Y ) 7→ Y ′ and R(Z) 7→ Z ′. This will
imply that ιR carries the remaining saddle connections as claimed by the lemma.

The fact that widths of αi and βi are the same for i = 5, . . . , 8 guarantees that the saddle
connections ∂α0 ∩ ∂αi and ∂β0 ∩ ∂βi have the same length for i = 1, . . . 4. (For instance,
length(∂α0 ∩ ∂α1) = w5 + w6 = length(∂β0 ∩ ∂β1).) Thus we have ιR(R(X)) = X ′ since
R(∂α0 ∩ ∂α3) and ∂β0 ∩ ∂β3 have the same length.

We will now check that ιR(R(Y )) = Y ′. We can see this in terms of vectors. We see that

the vector
−−→
WY = (w5,−w0) in α0. Thus R(

−−→
WY ) = (w0, w5 + bw0) in R(α0). We also have

−−−→
W ′Y ′ = (w0, w5 +w6 +w8) in β0. Thus, we have R(

−−→
WY ) =

−−−→
W ′Y ′ so long as w6 +w8 = bw0.

Therefore, with the conditions of the lemma true, we have ιR : R(Y ) 7→ Y ′.
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We also have that ιR : R(Z) 7→ Z ′ because the length of the segment R(∂α0 ∩ ∂α2) equals
the length of ∂β0 ∩ ∂β2. �

Proof of Theorem 3. Recall a = 2 cos π
m

and b = 2 cos π
n
. The cylinders are indexed by Z2

and the widths are given by wi,j = sin( iπ
m

) sin( jπ
n

). Note that these widths are zero just
outside the indexing set Λ = {(i, j) ∈ Z2 : 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1}. That is,
wi,j = 0 if i = 0, i = m, j = 0 or j = n.

We first prove that P =

[
1 a+ b
0 1

]
is in the Veech group. By proposition 14, it is

sufficient to show that the inverse modulus of each cylinder αi,j is m−1
i,j = a+ b. We compute

(3)
m−1
i,j =

wi+1,j+wi,j+1+wi−1,j+wi,j−1

wi,j
=

wi+1,j+wi−1,j

wi,j
+

wi,j+1+wi,j−1

wi,j

=
sin

(i+1)π
m

+sin
(i−1)π
m

sin iπ
m

+
sin

(j+1)π
n

+sin
(j−1)π
n

sin jπ
n

= 2 cos π
m

+ 2 cos π
n

= a+ b.

Now we prove that R =

[
0 −1
1 −b

]
is in the Veech group. The local picture in the cylinder

intersection graph G surrounding each cylinder αi,j and βi,j is identical to that of α0 and β0

of figure 5 up to possibly a reflection in a vertical line. Consequently, it is sufficient to check
the conditions of 16. We must check that wi,j+1 + wi,j−1 = bwi,j. We have

wi,j+1 + wi,j−1 = sin iπ
m

(sin (j+1)π
n

+ sin (j−1)π
n

) = sin iπ
m

(2 sin jπ
n

cos π
n
)

= 2wi,j cos π
n

= 2bwi,j.

�

2.5. The Veech groups of a component. We will now describe the complete orientation
preserving Veech group of each individual component of Sm,n.

Theorem 17. Consider integers m and n with 2 ≤ m, 2 ≤ n, and not m = n = 2. Let S∗m,n
be either component of Sm,n.

• If m 6= n, then
– When m and n are not both even, V +(S∗m,n) is the (m,n,∞) triangle group

〈R,P | Rn = (RP )m = −I〉.
– When m and n are both even, V +(S∗m,n) is the index 2 subgroup of the (m,n,∞)

triangle group given by

〈P,R2, RPR | (R2)
n
2 =

(
(RPR)P

)m
2 = −I〉.

• If m = n, then
– When m is odd, V +(S∗m,m) is the (2,m,∞)-triangle group

〈Q,R : Q2 = Rm = −I〉.
– When m is even, V +(S∗m,m) is a (m

2
,∞,∞) triangle group. We have

V +(S1
m,m) = 〈RQ,R2 | (R2)

m
2 = −I〉 and V +(S2

m,m) = 〈RQ−1, R2 | (R2)
m
2 = −I〉.

Proof. Heuristically, fix one of the cases. Let Γ ⊂ PSL(2,R) be the group generated by
the elements claimed to generate V +(S∗m,n) in our case of the theorem. We need to show
Γ = V +(S∗m,n). The comments below show that we have already proved that Γ ⊂ V +(S∗m,n)
in each case.
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• That P , R2, and RPR lie in V +(S∗m,n) follows from theorem 3 above, which is proved
in section 2.4. Note, the affine automorphism ρ, with Dρ = R, interchanges the two
components of Sm,n.
• When m or n is odd, R ∈ V +(S∗m,n). See the comments below proposition 6.
• Suppose m = n. When m is odd, Q ∈ V +(S∗m,m). When m even, we have RQ ∈
V +(S1

m,m) and RQ−1 ∈ V +(S2
m,m). See the remarks below proposition 7.

We also must show that V +(S∗m,n) ⊂ Γ. Given that Γ ⊂ V +(S∗m,n), there is a covering map

H2/Γ → H2/V +(S∗m,n). These quotients of the hyperbolic plane are all hyberbolic orbifold
with the topology of a punctured sphere (with cone singularities).

Let M be an orbifold which is topologically a 2-sphere (possibly with punctures). Let S
be the set of singularities of M . That is, S is the collection of cone points and punctures of
M . In this specific case, the Euler number of M is given by the formula

χ(M) = 2 +
∑
s∈S

(
1

|Gs|
− 1),

where Gs is the group associated to the singularity s. Treat 1/|Gs| = 0 if Gs is infinite, ie.
when s is a puncture. For more information on the Euler number of an orbifold see chapter
13 of [Thu81]. Note that a hyperbolic orbifold must have negative Euler number. Moreover,
if M → N is a covering map of degree d, then χ(N) = χ(M)/d. In particular, we have
χ(M) ≤ χ(N) with equality implying that M = N . Note further that adding more singular
points only lowers the Euler number. We apply this argument to the case M = H2/Γ and
N = H2/V +(S∗m,n).

We know that N has at least one puncture, corresponding to the horizontal cylinder
decomposition. If n and m are even, N must have another puncture corresponding to the
vertical cylinder decomposition. Here, no element of V +(S∗m,n) may send the horizontal
direction to the vertical direction. This is because when m and n are even, the number of
maximal horizontal and vertical cylinders of Sm,n differ by one.

Now we consider the finite order singularities. Call an elliptic e ∈ V +(S∗m,n) maximal if
any elliptic that commutes with it has smaller order. When n or m is odd, the matrices
R,RP ∈ Γ are elliptics of order n and m respectively. Moreover, they are maximal in
V +(Sm,n), by proposition 10. Thus, so long as m 6= n, we have two singularities of order n
and m. When m = n is odd we have at least one singularity of order m = n. If both n and
m are even, then by proposition 10 we have maximal elliptics of orders n/2 and m/2, given
by R2 and (RP )2. When n 6= m this yields at least two singularities, and when n = m this
yields at least one singularity.

The argument above tells us that N has at least the same number of singularities as M
for all cases of n and m. Moreover, it has singularities of the same orders. Thus we have
χ(M) ≥ χ(N). Since we have a covering M → N , it must be that χ(M) = χ(N). Thus
M = N and Γ = V +(S∗m,n). �

The following corollary indicates that the surfaces S1
m,n for m and n even seem to be new

examples of surfaces with the lattice property. Note that the surfaces described in [BM06]
have Veech groups which are triangle groups.

Corollary 18. The surface S1
m,n with both m and n even has a Veech group which is not a

triangle group.
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3. Eigenvectors of graphs

3.1. An algebraic interpretation. In this section we suppose we are in the following
situations. S is a translation surface admitting maximal cylinder decompositions A and B
in the horizontal and vertical directions respectively. Assume that each is indexed by the
same set Λ and that there is an affine automorphism ρ such that ρ(αi) = βi for all i ∈ Λ.
Moreover, we assume that the width and circumference of each cylinder αi and βi are the
same. Denote these widths and circumferences as wi and ci respectively.

Let J be the cylinder intersection matrix. That is, J is the matrix of entries with entry Ji,j
equal to the number of intersection between αi and βj. Let w denote the vector of widths
and c denote the vector of circumferences. Then we have that

(4) circumference(βi) =
∑
j∈Λ

#(βi ∩ αj)width(αj).

This corresponds to the matrix equation c = Jw. By similar logic with the roles of α and β
reversed, we have cT = wTJ . Therefore, we have that

(5) Jw = JTw.

In some sense, J acts symmetrically on w. Now let M denote the diagonal matrix of moduli
of cylinders. That is, let Mi,i = wi

ci
. Then we have the second matrix equation Mc = w.

Therefore, the widths of cylinder can be viewed as a positive eigenvector corresponding to
the eigenvalue 1 by the matrix equation

(6) MJw = w

We wish to relate w to eigenvectors and eigenvalues on graphs. Eigenvectors and eigenval-
ues of a graph are simply the eigenvectors and eigenvalues of the graph’s adjacency matrix.
See [LM95] for more information. Let G ′ denote the quotient G/ ∼ which identifies the
nodes αi ∼ βi for all i ∈ Λ. Call the identified node γi. The adjacency matrix of G ′ is the
matrix A whose entry Ai,j is the number of edges between γi and γj. In fact, this implies
that A = J + JT . By equations 5 and 6, we see w satisfies MAw = 2w. When all the
moduli are the same, we see that the common inverse modulus of the cylinders is half the
Perron-Frobenius eigenvalue of A and w is the corresponding eigenvector.

Now restrict to our case of Sm,n. All our cylinders have the same moduli. The edges of
the quotient graph G ′m,n come in pairs joining the same nodes. Let G ′′m,n be the quotient of
G′m,n which identifies these pairs of edges. The resulting graph G ′′m,n is graph-isomorphic to
one of the components of Gm,n.

The Cartesian product of two graphs G and H is the graph with nodes given by pairs (g, h)
where g is a node of G and h is a node of H. We join an edge between (g, h1) and (g, h2)
for all g and all edges h1h2 in H and join an edge between (g1, h) and (g2, h) for all h and
all edges g1g2 in G. The adjacency matrix of the Cartesian product of two graphs is closely
related to the adjacency matrix of the original graphs. Let A(G) denote the adjacency matrix
of the graph G. Then A(G ×H) = A(G)×A(H), where × denotes the Cartesian product of
two matrices. See [LY93] for more information.

Proposition 19 (Eigenvectors and products of graphs). Assume the weights wg for nodes
of G form an eigenvector corresponding to the eigenvalue λ1 for the adjacency matrix of the
graph G, and the weights wh form an eigenvector corresponding to the eigenvalues λ2 for the
adjacency matrix of the graph H. Then the weights wg,h = wgwh for the nodes of G × H
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form an eigenvector corresponding to the eigenvalue λ1 + λ2 of the adjacency matrix of the
graph G ×H. The weights assigned to nodes of the fibers of the projections G ×H → G and
G ×H → H are constant multiples of the eigenvectors provided for H and G respectively.

The proof of the proposition trivially follows from the fact that A(G×H) = A(G)×A(H).
See [LY93].

Let Ln denote the line of nodes 1, 2, . . . , n − 1, with an edge joining each integer to
the subsequent integer in the list. The adjacency matrix of Ln has the Perron-Frobenius
eigenvector given by the weights wi = sin iπ

n
corresponding to the eigenvalue cos π

n
.

We remark that a surprising coincidence has occurred. The graph G ′′m,n may be seen to be
graph isomorphic to the product Lm×Ln. Therefore, the widths of cylinders are forced to be
as in the theorem 3 by the algebraic considerations above. On the other hand, the geometry
of lemma 16 states local conditions on the widths of cylinders. Algebraically, these conditions
are precisely equivalent to locally checking that the assignments of cylinder widths satisfy
the eigenvector conditions on the fibers of the projection maps G ′′m,n → Lm and G ′′m,n → Ln
as described in proposition 19.

3.2. Infinite translation surfaces. In this section, we construct new examples of infinite
translation surfaces with the lattice property. We begin by generalizing our discussion of the
adjacency matrix of a graph.

Let G be a graph, which we assume to be connected but have no multiple edges or loops.
Let V denote the vertex set, which is possibly countably infinite. Let E(x) ⊂ V denote the
vertices adjacent to a vertex x ∈ V . We assume each E(x) is finite. Let CV denote the set of
functions f : V → C. We define the adjacency operator H : CV → CV by

(Hf)(x) =
∑
y∈E(x)

f(y).

This is a generalization of multiplication by the adjacency matrix to infinite graphs. An
eigenfunction of H corresponding to the eigenvalue λ ∈ C is an f ∈ CV such that Hf = λf .

Let LZ denote denote the graph with integer vertices whose edges consist of pairs of
integers whose difference is ±1. Let G be a connected subgraph of LZ with vertex set V . Up
to translation and reflection, we can assume V = Z, V = N, or V = {1, . . . , n− 1}.

Definition 20. With G and V as in the previous paragraph, the critical eigenfunctions of
H : CV → CV are the eigenfunctions

• f(x) = 1 if V = Z (corresponding to λ = 2),
• f(x) = x if V = N (corresponding to λ = 2), and
• f(x) = sin xπ

n
if V = {1, . . . , n− 1} (corresponding to λ = cos π

n
).

We remark, without proof, that these eigenfunctions are the unique positive eigenfunctions
up to scalar multiplication determined by these values of λ. In addition, the chosen value of
λ is the smallest such that there are corresponding positive eigenfunctions.

We now repeat the construction described in section 1.3 for Cartesian products of infinite
graphs of connected subgraphs. Let I and J be connected subgraphs of LZ, with vertex
sets VI and VJ . We may assume that I,J ∈ {Ln : n ≥ 2} ∪ {LN,LZ}. Let G be the graph
which is the union of two copies of the graph I × J . The vertices V of G are the set

V = A ∪ B, where A = {αi,j : i ∈ I and j ∈ J } and B = {βi,j : i ∈ I and j ∈ J }.
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The graph G is constructed by joining αi,j to βi′,j′ for each pair with (i− i′)2 + (j− j′)2 = 1.
Let E be the edges of this graph, and define the permutations e, n : E → E as in convention
2.

The above paragraph builds the combinatorial structure for a translation surface built as
a union of rectangles, coming from the intersections of cylinders in horizontal and vertical
cylinder decompositions. Choosing the widths of these cylinders (which correspond to the
vertices of the graph G) determines the flat structure. Let fI : VI → R and fJ : VJ → R be
the critical eigenfunctions. Let λI and λJ denote the critical eigenvalues. Let SI,J be the
surface determined by the width function

w(αi,j) = w(βi,j) = fI(i)fJ (j).

Then SI,J is an infinite translation surface with two components.

Theorem 21. The surface SI,J for have the lattice property. The Veech group is generated
by

P =

[
1 λI + λJ
0 1

]
and R =

[
0 −1
1 −λJ

]
.

The proof is the same as the proof of theorem 3, because the proof only relies on proposition
14 and lemma 16, which are both local conditions.

We describe decompositions of these surfaces into analogs of semiregular polygons in sec-
tion 6.

4. Gluings of semiregular polygons

In this section we prove theorem 9, which provides a decomposition of the surface M(Sm,n)
into semiregular polygons.

Proof of theorem 9. We will decompose the surface Sm,n into polygons. Then we will show
that the image of these polygons under M are the desired semiregular polygons. The proof
will end by noting that the edges are identified as described above the statement of theorem
9.

We claim it is sufficient to prove existence of a direction preserving isometry from a single
component M(Sm,n) to a single component of S ′m,n. Let S ≡ T denote the existence of a
direction preserving isometry between the translation surfaces S and T . The automorphism
ρ of Sm,n defined in theorem 3 swaps the two components of Sm,n. Let S1 denote one of
the components of Sm,n. Then, Sm,n ≡ S1 t R(S1) where R = Dρ as in theorem 3. Let
S ′1 denote one of the components of S ′m,n. Then if M(S1) ≡ S ′1, we have that MR(S1) ≡
R′M(S1) ≡ R′(S ′1), where R′ = MRM−1. But a computation reveals that this R′ is just a
Euclidean rotation by (1 + 1

n
)π. Such a rotation is the derivative of an affine automorphism

of S ′m,n which interchanges the two components. Thus, we have found the desired direction
preserving isometry which sends the second component of Sm,n to the second component of
S ′m,n.

Let S1 denote the component of Sm,n containing the cylinder α1,1. Similarly, let G1 denote
the connected component of Gm,n containing the node α1,1. The nodes of G1 consists of those
horizontal cylinders αi,j with i+ j even, and those vertical cylinders βi,j with i+ j odd.

For ease of exposition, we consider the augmented graph G ′1 obtained by attaching de-
generate nodes and degenerate edges. The nodes of G1 are in bijection with the coordinates
(i, j) ∈ R2 with 0 < i < m and 0 < j < n. The nodes of G ′1 will be in bijection with those
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(i, j) ∈ R2 with 0 ≤ i ≤ m and 0 ≤ j ≤ n. Our added nodes are called degenerate nodes. We
follow the same naming conventions for these nodes. We join new degenerate edges between
nodes of distance one. An example graph is shown in figure 7. We call a degenerate edge e
α-degenerate, β-degenerate or completely degenerate if ∂e contains a degenerate α-node, a
degenerate β-node or both, respectively. We also define permutations e′, n′ : E(G ′1)→ E(G ′1)
following convention 2.

Figure 7. The augmented graph G ′1 for the connected component G1 ⊂ G5,5.
The degenerate edges are drawn as dotted lines. The map e′ is given by the
arrows surrounding the α vertices, and the map n′ is given by the arrows
surrounding the β vertices.

These degenerate edges correspond to degenerate rectangles on our surface S1. A degener-
ate rectangle is a rectangle with zero width or zero height. (The added nodes correspond to
cylinders with zero width according to the formula given in theorem 3.) The α-degenerate
edges correspond to horizontal saddle connections (rectangles with zero height) and the β-
degenerate edges correspond to vertical saddle connections. The completely degenerate edges
correspond to points on our surface.

Each edge e in the graph G ′1 corresponds to a rectangle (or degenerate rectangle) Re = R(e)
in the surface S1 with horizontal and vertical sides. The positive diagonal of a rectangle
with horizontal and vertical sides is the diagonal with positive slope. Let d(e) denote the
vector which points along the negative diagonal, oriented rightward and upward. The lower
triangle, denoted L(e), of a rectangle R(e) is the triangle below the positive diagonal. The
upper triangle, U(e) is the triangle above the positive diagonal. See figure 8. For degenerate
rectangles, we take R(e) = L(e) = U(e) to be the corresponding saddle connection, or point.
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Figure 8. A rectangle’s positive diagonal. The lower triangle is shaded gray,
and the upper triangle is white.

Recall that G ′1 is naturally embedded in Z2. Let ci,j denote the node of G ′1 in the position
(i, j). That is

ci,j =

{
αi,j if i+ j is even

βi,j if i+ j is odd.

We now define our decomposition of S1 into polygons. Let Hk denote the set of edges of G′1,
Hk = {ck,ick+1,i : 0 < i < m} for k = 0, . . . , n − 1. (

⋃
kHk is the set of horizontal edges

in the graph G ′1, and the edges in each Hk lie in a column.) For k = 0, . . . , n− 1 define the
polygon Q(k) ⊂ S1 by

(7) Q(k) =
⋃
e∈Hk

R(e) ∪ L
(
n′(e)

)
∪ L
(
e′−1(e)

)
∪ U

(
n′−1(e)

)
∪ U

(
e′(e)

)
.

An example decomposition is shown in figure 9.

Figure 9. The surface S5,5 decomposes into the polygons Q(0), Q(1), . . . Q(4)
ordered from left to right. Portions of the horizontal cylinders, α∗, and the
vertical cylinders, β∗ are labeled.

We will show that these subsets Q(k) are in fact polygons. Suppose k is odd and 0 < k ≤
n−1. Define the edge ei = ck,ick+1,i for i = 0, . . . ,m. We have ei ∈ Hk when i = 1, . . . ,m−1.
We have that n′ ◦ e′(ei) = e′ ◦ n′(ei) = ei+1. Therefore many of the triangles are mentioned
twice in equation 7 (e.g. L

(
n′(e1)

)
= L

(
e′−1(e2)

)
.) Moreover, the top right coordinate

vertex R(ei) is the same as the bottom left vertex of R(ei+1) and this point is non-singular
provided neither rectangle is degenerate. Thus this point is non-singular for i = 1, . . . , n−2.
With this in mind, we see that Q(k) is formed by a chain of rectangles R(ei) moving to the
northeast with some triangles added on. We define the edge vectors of Q(k) to be wi for
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i = 0, . . . , 2m− 1 by

(8) wi =


d(αk+1,iβk+1,i+1) if i < n and i even

d(αk,iβk,i+1) if i < n and i odd

−d(βk+1,2n−1−iαk+1,2n−i) if i ≥ n and i even

−d(βk,2n−1−iαk,2n−i) if i ≥ n and i odd

Therefore we have

wi =

{
sin (k+1)π

m
(sin (i+1)π

n
, sin iπ

n
) if i is even

sin kπ
m

(sin (i+1)π
n

, sin iπ
n

) if i is odd

for i = 0, . . . , 2n− 1. By a simple trigonometric calculation, we have that

Mwi =

{
sin (k+1)π

m
(cos iπ

n
, sin iπ

n
) if i is even

sin kπ
m

(cos iπ
n
, sin iπ

n
) if i is odd.

Thus, M(Q(k)) = Pn(sin (k+1)π
m

, sin kπ
m

) is the same polygon as P (k).
The case of k even is similar. Let ei = ck,ick+1,i for i = 0, . . . ,m. We have n′−1 ◦ e′−1(ei) =

e′−1 ◦ n′−1(ei) = ei+1. So, again the lower left and top right vertices are non-singular. But,
the chain of rectangles R(ei) moves toward the southwest. The edges are determined by the
added edges. Using i = n+ j, we have the edge vectors wi = wn+j as follows.

(9) wn+j =


−d(αk,jβk,j+1) if j ≥ 0 and j even

−d(αk+1,jβk+1,j+1) if j ≥ 0 and j odd

d(βk,−j−1αk,−j) if j < 0 and j even

d(βk+1,−j−1αk+1,−j) if j < 0 and j odd.

We see

wn+j =

{
− sin kπ

m
(sin (j+1)π

n
, sin jπ

n
) if j is even

− sin (k+1)π
m

(sin (j+1)π
n

, sin jπ
n

) if j is odd.

So, we have

Mwi = Mwn+j =

{
sin kπ

m
(cos iπ

n
, sin iπ

n
) if i− n = j is even

sin (k+1)π
m

(cos iπ
n
, sin iπ

n
) if i− n = j is odd.

Thus, M(Q(k)) = Pn(sin kπ
m
, sin (k+1)π

m
) when n is even and M(Q(k)) = Pn(sin (k+1)π

m
, sin kπ

m
)

when n is odd. In either case, we have M(Q(k)) = P (k).
Finally, we note that the gluings of polygons agree with the gluing definition given in

section 1.4. A comparison between equations 8 and 9 reveals that, for k odd, the even sides
of Q(k) are identified to the opposite side of Q(k−1) and the odd sides of Q(k) are identified
to the opposite side of Q(k + 1). �

5. Comparison to the Bouw-Möller surfaces

In this section, we will show that the surfaces discovered by Bouw and Möller are the
same as the surfaces we have described so long as m and n are not both even. The following
appears in theorem 5.15 of [BM06].
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Theorem 22 (Bouw-Möller). Suppose m and n are odd and relatively prime. The surface
X0 together with the differential ω0 given below determines a translation surface with an
affine automorphism group which is an (m,n,∞) triangle group.

X0 : y2n = (u− 2)

(m−1)/2∏
j=1

(
u− 2 cos

2jπ

m

)2

ω0 =
y du

(u− 2)
∏(m−1)/2

j=1 (u− 2 cos 2jπ
m

)

Remark 23. The condition that m and n must be relatively prime appears in [BM06],
but may be removed (for both theorems 22 and 25, above and below). The only change is
the number and orders of the singularities of the translation surface associated to the pair
(X0, ω0). In all cases, the singularities arise only when u =∞.

The following says that the surface described above is the same as the surface we built
with semiregular polygons.

Proposition 24. Up to scaling, there is an isometry from the translation surface determined
by the pair (X0, ω0) in theorem 22 and one component of the surface S ′m,n defined in subsection
1.4.

Proof. First let us understand the surface X0. Consider the map u : X0 → Ĉ given by the
u-coordinate. This map is 2n : 1 except at the points u = 2 and u =∞, where it is 1 : 1, and
the points u = 2 cos 2jπ

m
, where it is 2 : 1. The surface X0 and the differential ω0 have the

rotational and reflective symmetry of a regular 2n-gon. We may separate the u-plane into
strips and half-planes which each contain one of the points u = 2 or u = 2 cos 2jπ

m
by cutting

along vertical lines. We can pull these strips and half-planes back to the translation surface
(X0, ω0). The pullback of the half-plane containing u = 2 to (X0, ω0) has the symmetries of
a regular 2n-gon, but the pullback of the boundary of the strip is not geodesic. Similarly,
each component of the pull back of the strip containing u = 2 cos 2jπ

m
for 1 ≤ j < m−1

2
has the

symmetries of semiregular 2n-gon. The edges of the pullback alternate between pullbacks
of the two edges of the strip. For j = m−1

2
the left half plane pulls back to two components

with the symmetries of a regular n-gon. Then, we will show that the boundary curves of
these regions can be straightened to geodesics. We only alter this argument by replacing
vertical lines with carefully chosen hyperbolas.

Let u = 2 cos z. Let d denote the denominator of the expression for ω0. Then by trigono-
metric manipulations we have

d = (u− 2)

(m−1)/2∏
j=1

(u− 2 cos
2jπ

m
) = −4 sin

mz

2
sin

z

2
.

We also have

(u− 2)

(m−1)/2∏
j=1

(
u− 2 cos

2jπ

m

)2

= 2 cosmz − 2

Now we consider some paths in our surface. Let k be an odd number with 1 ≤ k < m. Let
z = kπ

m
+ 2it for t ∈ R. Thus each k determines a path in the u-plane. Let l be an integer
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with 0 ≤ l < 2n. The constant l will determine the lift of the curve in the u plane to X0.
Let γk,l ⊂ X0 denote the path parametrized by t ∈ R and defined by

u = u(t) = 2 cos z = 2 cos(
kπ

m
+ 2it)

y = y(t) = 2
1
n e( 1

2n
+ l
n

)iπ(−1)
k−1
2 cosh

1
n mt.

We have that both the right and left hand sides of the expression for X0 equal −4 cosh2mt,
so that γk does indeed lie on X0. The curves γk,∗ are pull backs of hyperbolas in u-plane

which separate the point u = 2 cos (k−1)π
m

from u = 2 cos (k+1)π
m

. Moreover, it can be seen
that these curves never intersect, because the hyperbolas do not.

We will now work on simplifying ω0 restricted to γk,l.

ω0

∣∣
γk,l

=
y(−2 sin z)dz

d
=
y(−4 sin z

2
cos z

2
)dz

−4 sin mz
2

sin z
2

=
y cos z

2
dz

sin mz
2

.

We have that sin mz
2

= sin kπ
2

coshmt = (−1)
k−1
2 coshmt. The power of −1 cancels, thus

(10) ω0

∣∣
γk,l

=
2

1
n e( 1

2n
+ l
n

)iπ cos z
2
dz

cosh1− 1
n mt

=
21+ 1

n e( 1
2n

+ l
n

)iπi cos( kπ
2m

+ it)dt

cosh1− 1
n mt

The holonomy along the curve γk is given by∫
γk,l

ω0 = 21+ 1
n e( 1

2n
+ l
n

)iπi

∫ ∞
−∞

cos( kπ
2m

+ it)

cosh1− 1
n mt

dt

Note that the denominator in this integral is always real, and the numerator satisfies

cos( kπ
2m

+ it) = cos( kπ
2m
− it). Thus,∫

γk,l

ω0 = 21+ 1
n e( 1

2n
+ l
n

)iπi

∫ ∞
0

2 Re
(

cos( kπ
2m

+ it)
)

cosh1− 1
n mt

dt = 22+ 1
n e( 1

2n
+ l
n

)iπi cos
kπ

2m

∫ ∞
0

cosh t

cosh1− 1
n mt

dt

Let C be the complex constant 22+ 1
n e

iπ
2n i
∫∞

0
cosh t

cosh1− 1
n mt

dt. Then we have∫
γk,l

ω0 = Ce
liπ
n cos

kπ

2m
.

The points of the form 2 cos 2j
m

on X0 are surrounded by the curves γ2j−1,∗ and γ2j+1,∗.

Thus the holonomies of the curves surrounding lifts of the point 2 cos 2j
m

are the same as the
holonomies of the semiregular 2n-gon

(11) Pn(cos
(2j − 1)π

2m
, sin

(2j + 1)π

2m
) = Pn(sin

(m− 2j + 1)π

2m
, sin

(m− 2j − 1)π

2m
),

up to uniform scaling and rotation given by multiplication by C.
Now we must show that these arcs can be homotoped to geodesic segments. We begin by

rewriting our formula for ω0 that appears in equation 10. Let cl = 21+ 1
n e( 1

2n
+ l
n

)iπi.

ω0

∣∣
γk,l

=
cl cos( kπ

2m
+ it)dt

cosh1− 1
n mt

=
cl
(
(cos( kπ

2m
)− i sin( kπ

2m
))et + (cos( kπ

2m
) + i sin( kπ

2m
))e−t

)
dt

cosh1− 1
n mt

Note that arg cl is constant in terms of l, which points in the direction of the holonomy

of γk,l. This formula shows that | argω0

∣∣
γk,l
/cl| < (m−k)π

2m
< π

2
. Moreover, argω0

∣∣
γk,l
/cl is

always decreasing in t. Thus, γk,l always turns rightward as t increases. The component of
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(X0, ω0) r
⋃
k,l γk,l containing the point where u = 2 is bounded by the curves γ1,l, which

travel clockwise around the point where u = 2. Thus, this component must have a“flower
shape,” as in left side of figure 10. It follows that the curves γ1,l can be straightened to
geodesics. Now assume the curves γk,l have been straightened to geodesics. We will show
that the curves γk+1,l can also be straightened. The components γk,l and γk+1,l bound the two

regions containing the two points where u = 2 cos (k+1)π
m

. We may assume to have already
straightened the γk,l. The curves γk+1,l turn rightward as the they travel around the region
in the clockwise direction. Hence, they look like the curved boundary edges of the region on
the right side of figure 10. These curves can also be straightened to geodesics.

Figure 10. A caricature of the regions bounded by the curves γk,l before
straightening. Here n = 5.

The polygons given in equation 11, whose edges are the straightened versions of γk,l, are
the same polygons used to build the surface S ′m,n, up to multiplication by C. Moreover, after
indexing the polygons appropriately, we can see that these polygons are glued together in
the same combinatorial way. �

The following is the second part of theorem 5.15 of [BM06].

Theorem 25 (Bouw-Möller). Suppose m is even, n is odd and that n and m are relatively
prime. The surface X0 together with the differential ω0 given below determines a translation
surface with an affine automorphism group which is an (m,n,∞) triangle group.

X0 : y2n = (u− 2)n
m/2∏
j=1

(
u− 2 cos

(2j − 1)π

m

)2

ω0 =
y du

(u− 2)
∏m/2

j=1 (u− 2 cos (2j−1)π
m

)

Proposition 26. Up to scaling, there is an isometry from the translation surface determined
by the pair (X0, ω0) in theorem 25 and one component of the surface S ′m,n defined in subsection
1.4.

Proof. The structure of X0 is slightly different. The map u : X0 → Ĉ is 2 : 1 at each point

u = 2 cos (2j−1)π
m

, n : 1 at u = 2 and 1 : 1 at u = ∞. We will cut along curves which are

lifts of hyperbolas in the u-plane that separating the points u = 2 cos (2j−1)π
m

. We will also
cut along n disjoint paths through the lifts of u = 2. The components of (X0, ω0) with these
arcs removed all have the symmetries of a semiregular 2n-gon.

Let u = 2 cos z. Then we have that
m/2∏
j=1

(
u− 2 cos

(2j − 1)π

m

)
= 2 cos

mz

2
.
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For k ∈ {0, 1, . . . , m−2
2
}, consider the path in the u-coordinate determined by z = z(t) =

2kπ
m

+ 2it with t ∈ R. We will use l ∈ {0, 1, . . . , 2n− 1} to denote the choice of a lift to X0.
We define the curve γk,l by

u = u(t) = 2 cos(
2kπ

m
+ 2it)

y = y(t) = (−1)ke
lπi
n 21+ 1

n i sin(
z

2
) cosh

1
n mt = e

lπi
n 21+ 1

n i sin(
jπ

m
+ it) cosh

1
n mt

This curve lies on X0 because both the left and right side of the defining equation equal
−22n+2 cosh2(mt) sin2n( z

2
). Moreover, these curves do not intersect, however when k = 0 we

have provided two names for the same curve. For all but k = 0, we can see disjointness
by looking at the u-plane. When k = 0, the curves pass through the branch point u = 2.
However, the y-coordinate changes sign as γ0,l passes through the time when u = 2. In fact
for l < n, γ0,l = γ0,l+n with opposite orientation. In particular, the curves γ0,∗ are continuous
through u = 2.

We will simplify the formula for ω0 restricted to these curves.

ω0

∣∣
γk,l

=
y du

−8 sin2 z
2

cos mz
2

=
y(−2 sin z) dz

−8 sin2 z
2

cos mz
2

dz
=

y cos z
2

dz

2 sin z
2

cos mz
2

Now we can expand y and z. Note that cos mz
2

= (−1)k coshmt

ω0

∣∣
γk,l

=
(−1)ke

lπi
n 21+ 1

n i cosh
1
n (mt) cos z

2
(2i) dt

2 cos mz
2

=
−e lπin 21+ 1

n cos(kπ
m

+ it) dt

cosh1− 1
n (mt)

We can now simplify the formula for the holonomy of γk,l.∫
γk,l

ω0 = −e
lπi
n 21+ 1

n

∫ ∞
−∞

cos(kπ
m

+ it)

cosh1− 1
n (mt)

dt

Let C = −22+ 1
n

∫∞
0

cosh t

cosh1− 1
n (mt)

dt. As in the previous proof, we have∫
γk,l

ω0 = −e
lπi
n 22+ 1

n cos(
kπ

m
)

∫ ∞
0

cosh t

cosh1− 1
n (mt)

dt = Ce
lπi
n cos(

kπ

m
)

The components of (X0, ω0) with {γk,l} removed which contain u = 2 cos (2j−1)π
m

are bounded
by curves of the form γj−1,∗ and γj,∗. The semiregular 2n-gon

Pn(cos
(j − 1)π

m
, cos

jπ

m
) = Pn(sin

(m− 2j + 2)π

2m
, sin

(m− 2j)π

2m
)

has edges with the same holonomy up to uniform scaling and rotation by multiplication by
C.

It remains to check that these edges can be straightened. The curves γ0,l are actually
already geodesic. And a calculation shows that the remaining γk,l are turning rightward.
Again, an inductive argument shows that each γk,l can be straightened. After re-indexing
the polygons, they are glued in the same combinatorial way. �
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6. Semiregular decompositions of infinite translation surfaces

Recall that in section 1.4, we defined surfaces S ′m,n as a union of semiregular polygons and
saw that S ′m,n was the image of Sm,n under an element of the affine group.

In this section, we list analogs of the definition of the surface S ′m,n for the infinite translation
surfaces S ′I,J defined in he previous subsection. We state these results without proof. These
decompositions can be obtained by cutting along positive diagonals of horizontal rectangles
and degenerate rectangles as in section 4.

We define the first component of S ′I,J as the union of P (k) for k ∈ V(I) ∪ {0}. Here,
each P (k) will be a semiregular polygon or an infinite sided analog. We follow the same
gluing conventions as before. For k odd, we identify the even sides of P (k) with the opposite
side of P (k + 1), and identify the odd sides of P (k) with the opposite side of P (k − 1).
(We will specify the gluing in more detail when needed.) We will also define the element
M ∈ GL(2,R) which sends SI,J to S ′I,J . Because R swaps the two components of SI,J , the

second component of S ′I,J can be attained by applying M ◦R ◦M−1 ∈ GL(2,R) to the first
component.

We first deal with the case when J = Ln for n ≥ 2. In all these cases, we have a natural
decomposition of the first component of SI,J . into semiregular 2n-gons, P (k).

(1) Let J = Ln. We will break in to subcases for I. However, in all these cases, we define

M =

[
csc π

n
− cot π

n
0 1

]
∈ GL(2,R). And thus, M ◦R◦M−1 =

[
− cos π

n
− sin π

n
sin π

n
− cos π

n

]
.

(a) Assume I = LZ. In this case, set P (k) = Pn(1, 1) for k ∈ Z.
(b) Assume I = LN and that n is odd. In this case, set P (k) = Pn(k + 1, k) for

k ∈ N ∪ {0}.
(c) Assume I = LN and that n is even. In this case, set P (k) = Pn(k, k + 1) for

k ∈ N ∪ {0} even, and set P (k) = Pn(k + 1, k) if k ∈ N is odd.

In order to cover the other cases, we need infinite analogs of a semiregular polygon. We
first handle the case J = LN. For i ∈ Z and a, b ≥ 0 not both zero, define the vectors

v+
i =

{
(a, ai) if i is even

(b, bi) if i is odd
and v−i =

{
(a,−ai) if i is even

(b,−bi) if i is odd
.

Define the semiregular polygonal parabola P+
N (a, b) to be the set of points who lie above the

polygonal parabola formed by translating the vectors v+
i so that the endpoint of v+

i aligns
with the starting point of v+

i+1 for all k. (The vertices of this polygonal parabola lie on an
upward pointed parabola.) Similarly, define the polygonal parabola P−N (a, b) to be the set
of points below the polygonal parabola formed by translating the vectors v−i so that the
endpoint of v−i aligns with the starting point of v+

i+1 for all k. Note that the even sides of
P+

N (a, b) can be glued to the even sides of P−N (a, c) in a unique way by translation. Also,
The odd sides of P+

N (a, b) can be glued to the odd sides of P−N (c, b).

(4) Let J = LN and I = Lm for m ≥ 2, I = LN, or I = LZ. For k ∈ V(I) ∪ {0}, set
P (k) = P+

N (fI(k+ 1), fI(k)) if k is even and P (k) = P−N (fI(k), fI(k+ 1)) if k is odd.
Here fI is the critical eigenfunction given in definition 20. (We treat fI(k) = 0 if

k 6∈ V(I).) Define M =

[
−1 1
−1 0

]
∈ GL(2,R). Then M ◦R ◦M−1 =

[
−1 0

1 −1

]
.

An example is depicted in figure 11.
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Figure 11. The first component of S ′I,J with J = LN and I = L4. These

are the polygonal parabolas P (0) = P+
N (
√

2
2
, 0), P (1) = P−N (

√
2

2
, 1), P (2) =

P+
N (
√

2
2
, 1) and P (3) = P−N (

√
2

2
, 0) from left to right.

Now we will cover the case J = LZ. For a, b ≥ 0 not both zero and k ∈ Z, define the
segments

eR
i =


(
a, (i−1)a

2
+ ib

2

)(
a, (i+1)a

2
+ ib

2

)
if i is even(

a, ia
2

+ (i−1)b
2

)(
a, ia

2
+ (i+1)b

2

)
if i is odd

eL
i =


(
− b, −(i−1)a

2
+ −ib

2

)(
− b, −(i+1)a

2
+ −ib

2

)
if i is even(

− b, −ia
2

+ −(i−1)b
2

)(
− b, −ia

2
+ −(i+1)b

2

)
if i is odd.

Define the semiregular strip PZ(a, b) to be the strip PZ(a, b) = {(x, y) ∈ R2 : −b ≤ x ≤ a},
with edges given by eleft

i and eright
i .

(5) Let J = LZ and I = Lm for m ≥ 2, I = LN, or I = LZ. For k ∈ V(I) ∪ {0}, set
P (k) = PZ(fI(k + 1), fI(k)) if k is even and P (k) = PZ(fI(k), fI(k + 1)) if k is odd.

(We treat fI(k) = 0 if k 6∈ V(I).) Again we define M =

[
−1 1
−1 0

]
∈ GL(2,R) and

M ◦R ◦M−1 =

[
−1 0

1 −1

]
.

Let us describe the gluing of these strips in detail. For k odd and i odd, we glue the sides
eR
i of P (k) to side eL

i of P (k − 1), and we glue side eL
i of P (k) to side eR

i of P (k − 1). For k
odd and i even, we glue the sides eR

i of P (k) to side eL
i of P (k + 1), and we glue side eL

i of
P (k) to side eR

i of P (k + 1). See figure 12 for an example.
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