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Abstract. We discuss a classical result in planar projective geometry known

as Steiner’s theorem involving 12 interlocking applications of Pappus’ theorem.

We prove this result using three dimensional projective geometry then uncover
the dynamics of this construction and relate them to the geometry of the

twisted cubic.

Introduction

Given a pair of lines with three points on each, Pappus’ theorem allows us to
construct a new line. In fact, these points allow for six distinct applications of
Pappus’ theorem, constructing six lines such as the ones shown to the right below.
Through computer experimentation or simply with pen, paper, and a straight-edge
one could discover the beginnings of Steiner’s theorem, that these six lines are
concurrent in threes.
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Figure 1. Pappus’ theorem and the six lines constructible via
Pappus’ theorem.

Steiner’s theorem manifests the surprising symmetry of Pappus’ theorem. This
paper is an exploration of this symmetry. We provide a proof of Pappus’ theorem
which opens the door to a close relationship between Pappus’ theorem and certain
constructions in projective 3-space. We use this viewpoint to prove Steiner’s theo-
rem. It should be noted that Steiner’s theorem is a known result, but we have not
seen an elementary proof of it. The need for such a proof was expressed in [Rig83].
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While the proof of Steiner’s theorem is the theme of this paper, probably our
deepest result is about a special kind of hexagon in projective 3-space (the skew
hexagon of the skew hexagon theorem). This theorem can be viewed as an un-
likely marriage between Pappus’ theorem and Desargue’s theorem. A second view
depicts this skew hexagon theorem as a geometric construction describing the skew-
symmetric polarities of projective 3-space. Skew-symmetric polarities are simply a
special kind of duality and will be distinguished from symmetric polarities. We will
define and describe these notions in §2.

We state Pappus’ theorem, Steiner’s theorem, and our results on its dynamics in
the next section. We follow this with a short introduction to projective geometry,
then we prove Pappus’ theorem and draw the connection to projective 3-space.
Steiner’s theorem is then proved with the aid of the skew hexagon theorem. In the
final section, we use the geometry of the twisted cubic to prove results involving
the dynamics of Steiner’s theorem over algebraically closed fields.

Throughout this paper, we will be concerned with projective geometry over a
base field of characteristic not two or three.

1. The statement of Steiner’s Theorem and dynamical results

Consider two lines, xl and yl, in the projective plane. Let x = (X1, X2, X3) be
a triple of distinct points on the line xl and y = (Y1, Y2, Y3) be a triple of distinct
points on yl.

Theorem 1.1 (Pappus’ Theorem). The points Z1 = X2Y3 ∩X3Y2, Z2 = X3Y1 ∩
X1Y3, and Z3 = X1Y2 ∩X2Y1 are colinear. (As in figure 1)

We define `(x, y) = Z1Z2Z3 to be the map which takes two ordered triples of
colinear points to the line constructed by Pappus’ Theorem. The permutation
group, S3, acts on triples of points. If υ ∈ S3 we define the group action

(1) υ(Y1, Y2, Y3) = (Yυ−1(1), Yυ−1(2), Yυ−1(3))

By inspection it can be seen that:
(1) `(y, x) = `(x, y)
(2) `(υx, υy) = `(x, y)

These statements follow from the fact that the construction constructs the same
points {Zi}, so ` must construct the same line. Therefore, the six lines `(x, υy)
exhaust the lines constructible with Pappus’ theorem from these triples.

Theorem 1.2 (Steiner’s Theorem I). The six lines `(x, υy), υ ∈ S3 are concurrent
in threes. More precisely, the the lines corresponding to even permutations are
concurrent. Similarly, the lines corresponding to odd permutations are concurrent.

For now on, we enumerate S3 as the group <σ, τ |σ3 = τ2 = (στ)2 = e>. We
label the triples of concurrent lines zeven = (`(x, y), `(x, σy), `(x, σ2y)) and zodd =
(`(x, τy), `(x, τσy), `(x, τσ2y)).

The projective plane has the nice property that any two points can be joined
by a line and any two lines intersect at a point. This notion is generalized by the
Principal of Duality, which tells us that any true statement in terms of points and
lines has a true dual statement, constructed by swapping the notions of point with
line, join with intersection, and colinear with concurrent. In particular there is a
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dual to Pappus’ theorem, which takes as input two triples of concurrent lines and
outputs a point. We will denote this dual operation as `∗.

Now consider `∗(zeven, υzodd) for υ ∈ S3. By the dual to Steiner’s Theorem I,
the points constructed are colinear in threes. Surprisingly, the points return to the
original lines:

Theorem 1.3 (Steiner’s Theorem II). `∗(zeven, υzodd) lies on xl when υ is even
and on yl when υ is odd.

Let O = xl ∩ yl be the point colinear with both the triples x and y. Choose a
new line y′l that contains the point O and a triple of points y′. Then we can again
apply Pappus’ theorem to the triples of points x and y′ in the six different ways,
again getting new triples of concurrent lines according to Steiner’s Theorem I, say
z′even and z′odd. Now we construct the points `∗(z′even, υz′odd) for υ even. The final
stage of Steiner’s theorem tells us that

`∗(zeven, σizodd) = `∗(z′even, σiz′odd) ∀i = 0, 1, 2

That is, the points constructed in Steiner’s Theorem II that lie on xl are identical
in both cases.

Theorem 1.4 (Steiner’s Theorem III). The points `∗(zeven, υzodd) for even permu-
tations υ are dependent on the point O = xl ∩ yl and the triple x, but independent
of the choice of line yl through O and of the triple of points y.

We define the Steiner Map to be the map

SO : x 7→ (`∗(zeven, zodd), `∗(zeven, σ2zodd), `∗(zeven, σzodd))

Where we define zeven and zodd as above based on x, O, and a triple of points y
colinear with O (the choice of y being necessary for construction but insignificant
to the result).

We are interested in the dynamics of this map, but rather than dealing directly
with this map, we choose to instead look at a nice conjugate. We will show in corol-
lary 4.8 that permutations commute with SO, as intuitively, we have constructed a
quantity which “considers the permutations of x equally.” Thus it makes sense to
consider SO as a map on unordered triples of points. The space of all unordered
triples of points in a projective line is canonically isomorphic to projective 3-space,
under the projectivization of the elementary symmetric polynomials. We denote
this isomorphism as Σ and it is the projectivization of the map (where F denotes
the ground field):

Σ : F × F × F → F 3 : (a, b, c) 7→ (a + b + c, ab + ac + bc, abc)

The map Σ has the property that it takes the space of all triples of identical points
to a twisted cubic. In the algebraically closed case, the space of all secants (lines
which pass through the twisted cubic at two points) and tangents of the twisted
cubic covers projective 3-space. More specifically, for any point in space not on
the twisted cubic, there is a unique secant or tangent of the twisted cubic passing
through that point.

We are interested in the map Σ ◦ SO ◦ Σ−1. This map turns out to be a ho-
mogeneous rational map of degree six which preserves nearly every secant of the
twisted cubic, but not the points on those secants. When restricted to a secant of
the twisted cubic, the map is conjugate in PGL(2, F ) to the map z 7→ z2. The
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properties of this map are discussed more thoroughly in section 5, with proofs for
geometry over an algebraically closed field and a discussion of the real case.

Pappus’ theorem can be seen as a degenerate version of Pascal’s theorem. Sup-
pose the triples of points x = (X1, X2, X3) and y = (Y1, Y2, Y3) lie on a conic C and
all points are distinct, then we have:

Theorem 1.5 (Pascal’s Theorem). The points Z1 = X2Y3 ∩X3Y2, Z2 = X3Y1 ∩
X1Y3, and Z3 = X1Y2 ∩X2Y1 are colinear.

We again define `(x, y) = Z1Z2Z3 to be the map which takes two triples of points
on a conic to this line. If we define σ and τ of S3 as before then we can prove an
analog of Steiner’s Theorem I.

Theorem 1.6 (Steiner’s Theorem I for Conics). The three lines `(x, y), `(x, σy),
and `(x, σ2y) are concurrent and the three lines `(x, τy), `(x, τσy), and `(x, τσ2y)
are concurrent.

Unfortunately, the further results of Steiner’s theorem fail for obvious reasons
(there are no lines to return to). A proof of Steiner’s theorem for conics similar in
spirit to the one we offer can be found in [Ped70].

2. Analytic Projective Geometry

Projective n-space over a field F , FPn, is the space of all lines through the origin
in the vector space Fn+1. We use a column vector of homogeneous coordinates,
T(a0 : . . . : an) defined up to scalar multiplication, to describe a point in this space.
Lines in these projective spaces are simply all such lines contained in a plane through
the origin. The space of projective transformations of FPn is PGL(n + 1, F ),
the space of all invertible n + 1-by-n + 1 matrices (GL(n + 1, F )) modulo scalar
multiplication. The matrices of PGL(n + 1, F ) act by left multiplication on the
points in FPn. PGL(n + 1, F ) acts n + 2-transitively on points in general position
in FPn, so for example, PGL(2, F ) can map any three points in FP1 to any other
three points. Projective geometry gets its name because projections generate these
group actions.

We use row vectors of homogeneous coordinates to denote hyperplanes (elements
of the dual projective space, (FPn)∗). A point X lies on a hyperplane Y if and
only if the dot product of the corresponding vectors is zero.

dot((y0 : · · · : yn), T(x0 : . . . : xn)) = x0y0 + . . . + xnyn

PGL(n + 1, F ) acts dually on hyperplanes by right multiplication by inverse ma-
trices, preserving dot.

Analytically, a duality D is a pair of maps determined by a matrix DM ∈
PGL(n + 1, F ) for which:

D :
FPn → (FPn)∗ : P 7→ TPDM

(FPn)∗ → FPn : l 7→ D−1
M

Tl

These maps preserve the incidence properties in the sense that if P is a point
in the hyperplane P then D(P) ∈ D(P ), since dot(P, P ) = dot(D(P ), D(P)) up
to scalar multiplication. In addition, it is natural to require that D ◦ D is the
identity transformation. Indeed, we define a polarity as such a duality. In this
case, we see that we must have that DM = TDM . Since we are dealing with
equality in PGL(n + 1, F ), the preimages of DM in GL(n + 1, F ) either has the
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property M = TM or M = −TM . The polarity D is known as symmetric or
skew-symmetric respectively depending upon this preimage. The skew-symmetric
polarities can only occur in odd dimensional projective spaces, as they come from
non-degenerate skew-symmetric matrices. Symmetric polarities are characterized
by a classical theorem which we state below. This theorem provides a method
of geometrically constructing the symmetric polarities, while our skew hexagon
provides a method for constructing the skew-symmetric polarities in FP3. An
important property of skew-symmetric polarities is that they always map a point
to a hyperplane containing that point. Up to coordinate changes their are only two
polarities in odd dimensions, a skew-symmetric and a symmetric polarity.

Theorem 2.1 (Symmetric Polarities). Symmetric polarities of FPn are in 1-1 cor-
respondence with quadric hypersurfaces via the map D 7→ {P ∈ FPn|P ∈ D(P )} =
QD. Moreover, for each P ∈ QD, D(P ) is the tangent to QD at P . For each
P ∈ FPn,

D(P ) =
⋃

{A,B∈Q|P∈AB}

D(A) ∩D(B)

For an understanding of this result in the plane, look at chapter 8 of [Cox64]. A
treatment of the 3-dimensional version is available in section 4.3 of [Todd58].

3. The Linearity Lemma and Pappus’ Theorem

Let M be the space of all non-zero two-by-two matrices modulo scalar multipli-
cation. M is canonically isomorphic to FP3 via the map

(2) I :
(

a b
c d

)
7→ T(a : b : c : d)

We will use matrices to coordinatize elements of M, but we will think of M as
endowed with the additional structure of FP3. For example, we will give dual co-
ordinates to the planes of M (ie. the planes of FP3 which are canonically identified
with some subset of M via I−1). Define the plane
(3)(

a b
c d

)
=

{(
m11 m12

m21 m22

)
∈ M

∣∣∣∣ am11 + bm12 + cm21 + dm22 = 0
}
∈ M∗

These coordinates may seem unnatural, but the equation at the right is just the
pull back of the dot product, which we call dotM. For M ∈ M and N ∈ M∗,
dotM(N,M) = dot(I∗(N), I(M)), where I∗ : M∗ → (FP3)∗ is defined essentially
identically to I above. For a relevant example, the space of trace zero matrices in
M, denoted Tr0 ∈ M∗, forms a planar subset of M and is given the coordinates of
the identity matrix:

(4) Tr0 =
(

1 0
0 1

)
=

{(
m11 m12

m21 m22

)
∈ M

∣∣∣∣ m11 + m22 = 0
}

Elements of PGL(2, F ) act on M both on the left and the right, and act dually on
the space of planes by multiplication on the same side by the inverse transpose of
the element. That is if M ∈ M and M ′ ∈ M∗ and γ ∈ PGL(2, F ) then

(γ·) : M 7→ γ ·M (·γ) : M 7→ M · γ
(γ·) : M ′ 7→ Tγ−1 ·M ′ (·γ) : M ′ 7→ M ′ · Tγ−1
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where (γ·) and (·γ) refer to left and right matrix multiplication respectively. These
rules can be derived to be necessary from the facts that dotM(N,M) = trace(TN ·
M) and the actions must preserve dotM up to scalar multiplication. These left and
right actions are projective and yield embeddings of PGL(2, F ) into PGL(4, F ) in
accordance with the identification I of M with FP3. Also, the map M 7→ M−1 for
M ∈ PGL(2, F ) extends to a linear action on matrices preserving dotM, and hence
to a projective action on M:

(5) −1 :
(

a b
c d

)
7→

(
d −b
−c a

)
Example 1 (Sample calculation). Let V ∈ M and H ∈ M∗ be given by

V =
(

2 −1
1 4

)
∈ M and H =

(
−2 3
3 1

)
You can tell that V is a point lying on the plane H because

dotM(H,V ) = (−2)(2) + (3)(−1) + (3)(1) + (1)(4) = 0

Now suppose M =
(

a b
c d

)
∈ PGL(2, F ), then M acts on M on the left yielding

(M ·)(V ) =
(

a b
c d

) (
2 −1
1 4

)
=

(
2a + b −a + 4b
2c + d −c + 4d

)
∈ M

by usual matrix multiplication. M acts on M∗ on the left by its inverse transpose

(M ·)(H) =
(

d −c
−b a

) (
−2 3
3 1

)
=

(
−2d− 3c 3d− c
2b + 3a −3b + a

)
∈ M∗

Notice that here we have used a projective inverse of M , rather than its inverse in-
side GL(2, F ) for ease of computation. We will compute that (M ·)(V ) ∈ (M ·)(H).

dotM((M ·)(H), (M ·)(V )) = (−2d− 3c)(2a + b) + (3d− c)(−a + 4b) +
(2b + 3a)(2c + d) + (−3b + a)(−c + 4d) = 0

An important subspace of M is the determinantal quadric Q consisting of the
projectivization of the set of all matrices of determinant zero. Properties of this
quadric will be important to the proof of Steiner’s theorem, in particular we will
need a concrete version of theorem 2.1.

Proposition 3.1 (Determinantal Polarity). The symmetric polarity DQ deter-
mined by the determinantal quadric Q sends M ∈ M to TM−1 ∈ M∗ and sends
N ∈ M∗ to TN−1 ∈ M. Here −1 is a linear rather than group theoretic action as
in equation (5).

Proof. Let DQ : M → M∗ : M 7→ TM−1 and DQ : M∗ → M : N 7→ TN−1. We
will show this is a symmetric polarity determined from Q in the sense of theorem

2.1. If M =
(

a b
c d

)
∈ M and N =

(
a′ b′

c′ d′

)
∈ M∗ then

DQ(M) =
(

d −c
−b a

)
and DQ(N) =

(
d′ −c′

−b′ a′

)
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so dotM(N,M) = dotM(DQ(M), DQ(N)), and so DQ is a duality. D2
Q is the

identity, so DQ is a polarity. We compute {M ∈ M|M ∈ DQ(M)} as

{M ∈ M|dotM(DQ(M),M) = 0} = {
(

a b
c d

)
|2ad− 2bc = 0} = Q

Thus DQ is symmetric because {M ∈ M|M ∈ DQ} 6= M and by theorem 2.1, DQ
is the symmetric polarity determined by Q. �

Remark 1 ((γ·) and (·γ) commute with DQ). We show (γ·)−1 ◦DQ ◦ (γ·) = DQ.
Consider M ∈ M

(γ·)−1 ◦DQ ◦ (γ·)(M) = (γ−1·)(T(γM)−1) = Tγ(Tγ−1TM−1) = TM−1 = DQ(M)

because DQ ◦ (γ·)(M) ∈ M∗ so here the action of (γ−1·) is by inverse transpose.
Similarly DQ commutes with (·γ).

Now we are prepared to give the Linearity Lemma, which will be our fundamental
tool in investigating Steiner’s theorem. Take lines xl and yl as in the start of section
1 containing the triples of points x and y respectively. Now, we construct a map,
Πy

x, from the Zariski open subset of the plane, FP2 \ (xl ∪ yl), to PGL(2, F ) as
follows:

1) Given a point P ∈ FP2 construct the linear projection through
P of each Yi onto xl as Y P

i = YiP ∩ xl for i = 1, 2, 3.
2) Define Πy

x(P ) ∈ PGL(2, F ) to be the unique element for which
Πy

x(P )(Xi) = Y P
i for all i, which exists by the 3-transitivity of

PGL(2, F ).
For us, a projective embedding is an embedding of one projective space into

another, that arises from projectivizing a 1-1 linear map between two vector spaces.

Lemma 3.2 (Linearity Lemma). The map Πy
x : FP2 \(xl∪yl) → PGL(2, F ) given

by P 7→ Πy
x(P ) extends to a projective embedding FP2 → M ∼=I FP3

We will break up the proof of this important lemma into a pair of propositions:

Proposition 3.3. The map Πy
x : FP2 \ (xl ∪ yl) → PGL(2, F ) maps (Zariski open

subsets of) lines to (Zariski open subsets of) lines. The image of Πy
x is contained

in a plane.

Proof. Given points S, T ∈ xl, consider the set of all π ∈ PGL(2, F ) for which
π(S) = T . In terms of matrices and up to scalar multiplication this means:(

a b
c d

) (
S1

S2

)
=

(
T1

T2

)
=⇒ T2(aS1 + bS2) = T1(cS1 + dS2)

Clearly, this yields a linear relationship among the matrix elements and this rela-
tionship is determined uniquely by S and T . We will use this linear relationship
without referring to an explicit equation.

Now choose a line l not through O = xl ∩ yl and P ∈ l. Let α ∈ PGL(3, F ) be
a projective transformation of the plane which takes the points Xi to Yi (such a
projective transformation exists and has a unique action when restricted to xl by
the 3-transitivity of PGL(2, F )). Let πP be the map which takes a point on yl to
the point on xl obtained by projection through P . We see that Πy

x(P ) = πP ◦ α.
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Clearly πP (O) = O and since P ∈ l, πP (l ∩ yl) = l ∩ xl. Thus for all P on l,
Πy

x(P ) ∈ PGL(2, F ) satisfies the two conditions:

Πy
x(P )(α−1O) = O(6)

Πy
x(P )(α−1(l ∩ yl)) = l ∩ xl(7)

Each of these equations determines a distinct planar subset of M ∼= FP3 by the
discussion of the previous paragraph, and therefore these two planes intersect in a
line. Condition (6) above actually holds independently of the choice of l, thus we
see the image of Πy

x lies in the plane determined by condition (6).
At this point we could probably use various machinery from algebraic geometry

on Zariski open sets together with the fundamental theorem of projective geom-
etry to prove our lemma, but this would veer away from the goal to provide an
elementary proof.

We still must prove that Πy
x maps a line l through O to a line. Choose P,Q ∈ l.

As before Πy
x(P ) = πP ◦ α and Πy

x(Q) = πQ ◦ α. Consider Πy
x(P ) ◦ Πy

x(Q)−1 =
πP ◦π−1

Q corresponding geometrically to projection from xl through Q to yl followed
by projection through P back to xl. We claim that this operation has a single fixed
point, namely O. Suppose X ∈ xl r{O} is fixed. Then set π−1

Q (X) = Y ∈ yl r{O},
so in particular X 6= Y . π−1

Q (X) = Y implies X, Y , and Q are colinear and
πP (Y ) = X implies X, Y , and P are colinear. Finally since X 6= Y , all four
points must be colinear, but this is absurd since both P and Q lie on l and XY so
P = Q = l ∩XY .

We have shown that the matrix corresponding to Πy
x(P ) ◦Πy

x(Q)−1 has a single
eigenvector for any P ∈ OQ = l, namely O. Fix a C ∈ PGL(2, F ) for which
C(O) = T(1 : 0). We see Πy

x(P ) ◦ Πy
x(Q)−1 is conjugate via C to (a projective

analog of) its Jordan canonical form:(
a b
0 a

)
= C ◦Πy

x(P ) ◦Πy
x(Q)−1 ◦ C−1

the set of all which forms a line in M. Solving for Πy
x(P ), we see that for all P ∈ l,

there is an a, b ∈ F such that

(8) Πy
x(P ) = C−1 ◦

(
a b
0 a

)
◦ C ◦Πy

x(Q)

Matrix multiplication on the right and left acts linearly on M, so Πy
x(l) is a line in

M. �

The next proposition will describe the completion of the map Πy
x : FP2 \ (xl ∪

yl) → PGL(2, F ) to a map from FP2 → M. The image of the remaining points
of FP2 will be contained in M \ PGL(2, F ) = Q, that is the space of non-zero
matrices with zero determinant modulo scalar multiplication. Before we state this
proposition, let us review briefly some properties of these matrices. Such a matrix
can be generically written as

(9) M =
(

ac bc
ad bd

)
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Further such a matrix’s equivalence class is determined by its kernel and image in
FP1. Namely if

−→v =
(
−b
a

)
−→w =

(
c
d

)
then M(−→v ) = 0 and for all −→u not a scalar multiple of −→v we have that M(−→u )
is a nonzero scalar multiple of −→w . We have a bijective map to the determinantal
quadric Q = M \ PGL(2, F ):

(10)
Q : FP1 × FP1 → Q
Q : (v, w) 7→ M

where v and w are the points in FP1 corresponding to the scalar equivalence class
of −→v and −→w and M is as above in equation (9). The map Q is linear in each
coordinate, therefore the Q(v, FP1) and Q(FP1, w) are lines in the determinantal
quadric. We will utilize this map in the statement of the following proposition:

Proposition 3.4. Πy
x : FP2 \ (xl ∪ yl) → PGL(2, F ) naturally extends to a line

preserving map FP2 → M by defining Πy
x(X) = Q(α−1(O), X) for X ∈ xl and

Πy
x(X) = Q(α−1(Y ), O) for Y ∈ yl. Here O = xl ∩ yl and α ∈ PGL(3, F ) is a

projective transformation of the plane sending the triple x to the triple y as in the
proof above.

Proof. Suppose l is a line passing through xl and yl at distinct points X = xl∩l and
Y = yl ∩ l respectively. Recall equations (6) and (7) yield distinct linear conditions
determining the image of l. We will show X and Y also satisfy these conditions. The
first condition was for P ∈ l, Πy

x(P )(α−1O) = O. From our definition of Πy
x(X),

its kernel is α−1O, so Πy
x(X)(α−1O) = 0 and this first linear condition is satisfied

degenerately. We defined Πy
x(Y ) so that its image is {O}, thus in particular the

equation Πy
x(Y )(α−1O) = O is satisfied. The second condition (equation (7)) can

be rewritten as Πy
x(P )(α−1(Y )) = X. Since Πy

x(X) was defined so that its image
is X, this condition is clearly satisfied for X. Πy

x(Y ) has a kernel consisting of
α−1(Y ), so Πy

x(Y )(α−1(Y )) = 0 and the second condition is satisfied degenerately.
We have shown that our extension of Πy

x sends lines which pass through xl and
yl at distinct points to lines. It is now necessary to show that this extension sends
a line l through O to a line. Choose Q on l and the conjugacy matrix C as in the
proof of proposition 3.3. We need to show that O is the unique eigenvector for
Πy

x(O) ◦Πy
x(Q)−1. As before we can write Πy

x(Q) = πQ ◦ α where πQ is projection
from yl to xl through Q. Then Πy

x(Q)−1 = α−1 ◦ π−1
Q and

Πy
x(Q)−1(O) = α−1 ◦ π−1

Q (O) = α−1(O)

Since we defined Πy
x(O) = Q(α−1(O), O), it follows that Πy

x(O) ◦ Πy
x(Q)−1(O) = 0

while for all points X ∈ xl with X 6= O, Πy
x(O) ◦Πy

x(Q)−1(X) = O. Thus O is the
unique eigenvector for Πy

x(O) ◦ Πy
x(Q)−1, with eigenvalue zero. Substituting O for

P in equation (8) we would see the equation is satisfied when a=0. Therefore our
definition for Πy

x(O) makes it colinear with the rest of Πy
x(l). �

Now we may conclude the proof of the Linearity lemma:

Proof of Lemma 3.2. The map Πy
x : FP2 → M is an algebraic 1-1 map, mapping

a plane to a plane and mapping lines to lines. Therefore by the fundamental
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theorem of projective geometry, Πy
x is a projective embedding, that is Πy

x is the
projectivization of a linear map. �

There is also a linearity lemma for conics. The subgroup of PGL(3, F ) preserving
a conic is isomorphic to PGL(2, F ), and PGL(2, F ) also acts 3-transitively on points
on conics. If x = (X1, X2, X3) and y = (Y1, Y2, Y3) are triples of points on a conic
C ⊂ FP2, we redefine Πy

x accordingly:
1) Given a point P ∈ FP2 \ C construct the points Y P

1 Y P
2 Y P

3 on C as
Y P

i = (YiP r {Yi}) ∩ C.
2) Define Πy

x(P ) ∈ PGL(2, F ) to be the unique element for which
Πy

x(P )(Xi) = Y P
i for i = 1, 2, 3.

Lemma 3.5 (Linearity Lemma for Conics). The map Πy
x : FP2 \ C → PGL(2, F )

given by P 7→ Πy
x(P ) extends to a projective embedding FP2 → M.

Rather than prove this lemma, we will just make some comments on the proof.

Sketch of proof. Define α ∈ FP2 to be the unique projective transformation map-
ping x to y. Then for all P , Πy

x(P ) = πP ◦ α where πP is the involution obtained
by projection through P , which sends a point X ∈ C to PX ∩ C r {X}. It can be
easily verified that such a map extends to a projective transformation of the plane
preserving C and thus gives rise to an element of PGL(2, F ) of order 2. Thus for
all P , Πy

x(P ) ◦ α−1 is an involution. But all involutions in PGL(2, F ) have trace
zero, thus (·α−1)Πy

x(FP2) ⊂ Tr0 = I by equation (4) so that Πy
x(FP2) ⊂ Tα−1.

Suppose a line l ⊂ FP2 intersects C at two points, X and Y . Then for all P on
l, πP exchanges X and Y . This gives rise to two linear equation determining that
the image of l under Πy

x is contained a line in M. If l intersects C at a single point
X, then for all P on l, πP preserves X. This together with the fact that πP is trace
zero determines the linear image of l.

We extend Πy
x to C by defining Πy

x(P ) = Q(P, P )◦α for P ∈ C, where Q is the map
as defined above proposition 3.4. This extension remains line preserving and thus
by the fundamental theorem of projective geometry is a projective embedding. �

Remark 2. PGL(2, F ) embeds as a Zariski open set into M, as the complement of
the determinantal variety ( ad− bc = 0 ), a quadric surface in M. By the linearity
lemma, Πy

x embeds the projective plane into M as a planar subset. For the conic
case, Πy

x(P ) ∈ PGL(2, F ) when P /∈ C, thus Πy
x(FP2) intersects the determinantal

variety in a conic. When x and y lie on two lines, then Πy
x(FP2) must intersect

the determinantal variety in two lines, and thus is tangent to this quadric.

As a demonstration of the power of the Linearity Lemmas, we will now prove
Pappus’ and Pascal’s theorems. First, the involutions (elements of order 2) of
PGL(2, F ) have properties worth mentioning. Any element of PGL(2, F ) whose
action swaps two points is an involution (this is exercise 6.7 in [KK96]). Here is a
cheap proof. Suppose γ ∈ PGL(2, F ) swaps A and B. We know every projective
transformation has a fixed point (inside an algebraically closed field), therefore γ2

fixes this fixed point, A, and B, so by the 3-transitivity of PGL(2, F ), γ2 is the
identity. We will also need the fact that an element of PGL(2, F ) is an involution if
and only if it has trace zero. This follows from manipulating equation (5). Now as a
corollary of our work, we have a proof of theorems of Pappus and Pascal (theorems
1.1 and 1.5):
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Proof of Pappus’ and Pascal’s theorems. The general attack will be to show that
Πy

x(Zi) is an involution for all i, hence each Πy
x(Zi) is contained in the plane Tr0

consisting of all points in M with trace zero. Then Πy
x(Zi) ∈ Tr0 ∩Πy

x(FP2) which
is a line by the linearity lemma, and so each Zi is contained in the pullback of this
line via (Πy

x)−1 which by another application of the linearity lemma shows us the
points Z1, Z2, and Z3 are colinear.

By the paragraph above, it is sufficient to show that each Πy
x(Zi) is an involution,

so let us consider the actions Πy
x(Zi). I claim that these maps act as involutions.

This can be seen fairly easily. We defined Z1 = X2Y3 ∩ X3Y2. Now, consider
Πy

x(Z1)(X2). This is defined to be Y2Z1 ∩ xl, which is X3 (see figure 1). Similarly,
Πy

x(Z1)(X3) = X2. Thus Πy
x(Z1) swaps the points X2 and X3 so is an involution.

Identical arguments show that Πy
x(Z2) and Πy

x(Z3) are involutions.
Our only fear is that perhaps Tr0 = Πy

x(FP2). To discount this, first notice
that Tr0 intersects the Q in a conic, thus this could only happen in the conic case,
by remark 2. Now recalling that Πy

x(FP2) = Tα−1 with α ∈ PGL(2, F ) mapping
x 7→ y projectively, we see that equation (4) and Πy

x(FP2) = Tr0 implies α = I and
so x must equal y. But x = y is absurd for our construction. �

Tr0

Πy
x(zl)

Πy
x(xl)

Πy
x(yl)

Πy
x(FP2)

Figure 2. Proof of Pappus’ Theorem. The quadric represents
M r PGL(2, F ).

Corollary 3.6 (Pappus’ and Pascal’s Line). A point P lies on the line Z1Z2Z3

constructed by Pappus’ Theorem or Pascal’s Theorem if and only if Πy
x(P ) has trace

zero (or equivalently is an involution).

Remark 3. The linearity lemma generalizes (but not the version regarding conics)
to the case of two hyperplanes in FPn with n+1-tuples of points on them in general
position. The higher dimensional generalization of Pappus’ theorem in [Wit79] can
be proven by considering trace zero matrices in PGL(n, F ). In fact, an analogous
proof to the proof we will give of Steiner’s Theorem I will also go through in this
case, though its further claims fail.
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4. Steiner’s Theorem

In this section, we will provide proofs of the theorems over algebraically closed
fields. This entails the results in general, because any field can be embedded in
its algebraic closure. A statement only involving linear subspaces which is true in
projective space over a field is also true over any subfield.

To begin our investigation of Steiner’s theorem, we are interested in how per-
mutations of the triple y affect the map Πy

x. Choose a generic point P . We de-
fined Y P

i = YiP ∩ xl. Thus for υ ∈ S3, (υY )P
i = Yυ−1(i)P ∩ xl. Consequently,

Πυy
x (P )(Xi) = Yυ−1(i)P ∩ xl.
Given x we get a representation ρx of S3 into PGL(2, F ) defined such that

(11) ρx(υ)(x) = υ−1x

or equivalently such that ρx(υ)(Xi) = Xυ(i) for all i. This is well defined because
PGL(2, F ) acts 3-transitively on xl. Then we have that

Πy
x(P ) ◦ ρx(υ−1)(Xi) = Πy

x(P )(Xυ−1(i)) = Y υ−1(i)P ∩ xl = Πυ(y)
x (P )(Xi)

Thus we have shown Πy
x(P ) · ρx(υ−1) = Πυ(y)

x (P ). It can be verified that this is
even true when Πy

x(P ) or Πυ(y)
x (P ) are elements of M r PGL(2, F ).

Recall that `(x, y) has the property that Πy
x(`(x, y)) ⊂ Tr0 by corollary 3.6 above.

This means that Πυy
x (`(x, υy)) ⊂ Tr0 and therefore Πy

x(`(x, υy)) · ρx(υ−1) ⊂ Tr0.
PGL(2, F ) acts on M∗ by inverse transpose, so because Tr0 = I as in equation (4)

Πy
x(`(x, υ(y))) ⊂ Tρx(υ−1) ∈ M∗

To simplify notation we define the planes

(12) Hυ = Tρx(υ−1) ∈ M∗∀υ ∈ S3

We are now prepared to offer proof of theorems 1.2 and 1.6:

Proof of Steiner’s Theorem I. We wish to show that `(x, y), `(x, σy) and `(x, σ2y)
intersect at a common point for σ = (123) ∈ S3. We have shown that Πy

x(`(x, y)) ⊂
He = Tr0, Πy

x(`(x, σy)) ⊂ Hσ, and Πy
x(`(x, σ2y)) ⊂ Hσ2 . We will prove that

the three planes He Hσ and Hσ2 intersect in a line, leven. It will follow that
the three lines `(x, y), `(x, σy) and `(x, σ2y) intersect in a common point namely
(Πy

x)−1(leven ∩Πy
x(FP2)), the pullback of the single point intersection of a line and

a plane.
We will now show that if m ∈ He and m ∈ Hσ then m ∈ Hσ2 . Suppose m ∈ M

is contained in He = Tr0, then we know m is an involution and thus

(13) m = m−1

Now suppose m ∈ Hσ = Tρx(σ−1). This is the same as saying ρx(σ−1) ·m ∈ Tr0,
by acting on both sides by ρx(σ−1) on the left (recall again this acts on the plane
Hσ by inverse transpose). Then ρx(σ−1) ·m is an involution, so

(14) ρx(σ−1) ·m = (ρx(σ−1) ·m)−1 = m−1 · ρx(σ)

Substituting equation (13) into equation (14), we see:

ρx(σ−1) ·m−1 = m · ρx(σ)
(m · ρx(σ))−1 = m · ρx(σ)(15)
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Which is the same as saying m · ρx(σ) ∈ Tr0 and therefore m is contained in
Tr0 · Tρx(σ) = Hσ2 . It follows that He ∩Hσ ∩Hσ2 = He ∩Hσ, a line.

At first glance it would appear that this proof depends on m ∈ PGL(2, F ) ⊂ M,
but the equations are always true provided you define −1 as in equation (5).

Thus `(x, y), `(x, σy) and `(x, σ2y) are concurrent. Also, it follows `(x, τy),
`(x, στy), and `(x, σ2τy) are concurrent by substitution of τy for y. �

Following Steiner’s theorem, we have constructed the six lines `(x, υy), which we
will denote by `υ. Via our projective embedding into M, these lines correspond to

Πy
x(`υ) = Πy

x(FP2) ∩Hυ

We arranged these lines in coincident triples zeven = (`e, `σ, `σ2) and zodd =
(`τ , `τσ, `τσ2). Now we wish to consider `∗(zeven, zodd). Explicitly

`∗(zeven, zodd) =
(`σ ∩ `τσ2)(`σ2 ∩ `τσ)∩
(`σ2 ∩ `τ )(`e ∩ `τσ2)∩

(`e ∩ `τσ)(`σ ∩ `τ )

We can reinterpret this construction as embedded inside M as

(16) Πy
x(`∗(zeven, zodd)) =

(Hσ ∩Hτσ2 ∩Πy
x(FP2))(Hσ2 ∩Hτσ ∩Πy

x(FP2))∩
(Hσ2 ∩Hτ ∩Πy

x(FP2))(He ∩Hτσ2 ∩Πy
x(FP2))∩

(He ∩Hτσ ∩Πy
x(FP2))(Hσ ∩Hτ ∩Πy

x(FP2))

We will show that the six lines implicitly shown in equation (16)

(17)
Hσ ∩Hτσ2 Hσ2 ∩Hτσ

Hσ2 ∩Hτ He ∩Hτσ2

He ∩Hτσ Hσ ∩Hτ

arrange themselves in a hexagon. The group S3 =<σ, τ |σ3 = τ2 = (στ)2 = e> is
generated by two of its involutions, say τσ and τσ2. Consider the Cayley graph
constructed using these two generators. This Cayley graph has the group elements
of S3 as its vertices, and connects each element υ ∈ S3 to τσυ and τσ2υ. This
Cayley graph is the hexagon shown in figure 3.

τσ2

σ

e

τσ

τσ2

Figure 3. The Cayley graph of S3 with generators τσ and τσ2

Remark 4. There are 6 possible hexagonal Cayley graphs of this type for S3 cor-
responding to the 6 points that are constructed for Steiner’s theorem II. First we
choose the two permutations and second we must choose whether the generators act
on the left or the right.

We will call the hexagon V1V2V3V4V5V6 ⊂ FP2 a skew hexagon if
• V1, V3, and V5 are contained in a line l,
• V2, V4, and V6 are contained in a line l′,
• and l and l′ are skew lines.
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There is an incarnation of the hexagonal Cayley graph just described and de-
picted in figure 3 as a skew hexagon composed of the lines in (17) above. Namely
for each edge of the Cayley graph, say υυ′, construct the line Hυ ∩Hυ′ (these are
the lines of equation (17)). At first glance we have six lines floating in space, but in
fact they intersect as suggested by the Cayley graph. This is because two adjacent
lines are given by Hυ ∩Hτσυ and Hυ ∩Hτσ2υ which intersect at the vertex

Vυ = Hυ ∩Hτσυ ∩Hτσ2υ

This definition forces that for υ, υ′ ∈ S3 adjacent in the Cayley graph we have
Hυ ∩Hυ′ = VυVυ′ . The three planes Hυ with υ even intersect in a common line,
leven, and the three planes with υ odd intersect in the line lodd. Then Vυ ∈ lodd for
υ even, since Vυ ∈ Hτσυ ∩Hτσ2υ = lodd. Similarly, the three points Vυ for υ odd
are colinear and contained in the line leven. Our skew hexagon is therefore self dual
in the sense that both the hexagon composed of Vυ and Hυ are both skew, just in
dual projective spaces. But, our skew hexagon is self dual in a much stronger sense.
Recall the definition of skew-symmetric polarity appearing in section 2.

Proposition 4.1 (Skew-symmetry). There is a skew-symmetric polarity D which
acts on our skew hexagon as:

D : Hυ 7→ Vτυ D : Vυ 7→ Hτυ

Proof. We will prove this proposition by brute force. Since PGL(2, F ) acts 3-
transitively on points on the line xl, we may choose coordinates for the three points
in x arbitrarily, for ease of computation, we choose

x = (T(1 : 1), T(ω : ω2), T(ω2 : ω)) ∈ (FP1)3

with ω ∈ F a cube root of unity, that is ω3 = 1 but ω 6= 1. We chose σ = (123)
and τ = (23), which give us our representation

ρx(σ) =
(

ω 0
0 ω2

)
ρx(τ) =

(
0 1
1 0

)
From our definition of Hυ = Tρx(υ−1) we obtain coordinates for the planes Hυ:

He =
(

1 0
0 1

)
Hσ =

(
ω2 0
0 ω

)
Hσ2 =

(
ω 0
0 ω2

)
Hτ =

(
0 1
1 0

)
Hτσ =

(
0 ω
ω2 0

)
Hτσ2 =

(
0 ω2

ω 0

)
From our definition of Vυ = Hυ∩Hτσυ∩Hτσ2υ we obtain coordinates for the points
Vυ, which can be checked by computing cross products as in equation (3).

Ve =
(

1 0
0 −1

)
Vσ =

(
ω 0
0 −ω2

)
Vσ2 =

(
ω2 0
0 −ω

)
Vτ =

(
0 −1
1 0

)
Vτσ =

(
0 −ω2

ω 0

)
Vτσ2 =

(
0 −ω
ω2 0

)
Now, we can explicitly state the map D:

D : M → M∗ :
(

a b
c d

)
7→

(
b −a
d −c

)
D : M∗ → M :

(
a b
c d

)
7→

(
b −a
d −c

)
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By inspection D : Hυ 7→ Vτυ and D : Vυ 7→ Hτυ by inspection. To see that D is a
skew-symmetric polarity, note that D is linear, D preserves the dot product M ×
M∗ → F up to scalar multiple, D2 is the identity, and finally that D maps a point
in M to a plane containing that point. This final property differentiates a skew-
symmetric polarity from a symmetric polarity and can be checked by computing a
dot product:

dotM(D(M),M) = dotM(
(

b −a
d −c

)
,

(
a b
c d

)
) = ba− ab + dc− cd = 0

�

Before introducing the skew-hexagon theorem, we will need the following geo-
metric property of skew-symmetric polarities restricting how lines are sent to to
lines.

Proposition 4.2. If D is a skew-symmetric polarity swapping skew (non-intersecting)
lines l1 and l2, then any line m passing through both is preserved by D.

Proof. Define the planes Pi = span(li,m) and the points P = li ∩ m for i = 1, 2.
Then m = P1 ∩ P2 = P1P2 and l2 ∩ P1 = P2 and l1 ∩ P2 = P1.

Because l1 ⊂ P1 and D is a polarity, we have D(P1) ⊂ D(l1) = l2. And because
D is a skew-symmetric polarity, D(P1) ⊂ P1. Thus D(P1) = l2∩P1 = P2. Similarly
it follows D(P2) = P1. Finally we see m is fixed:

D(m) = D(P1 ∩ P2) = D(P1)D(P2) = P2P1 = m

�

The skew hexagon theorem will demonstrate how the skew-symmetric polarity D
relates to our construction. In itself this theorem represents a concrete construction
of skew-symmetric polarities in FP3 using a skew hexagon. The main observation
here is that any skew hexagon is projectively equivalent to any other skew hexagon,
therefore every skew hexagon has an associated skew-symmetric polarity just like
our hexagon.

Theorem 4.3 (The Skew Hexagon Theorem). Consider a skew hexagon in FP3

with vertices V1V2V3V4V5V6 such that the odd vertices are colinear and the even
vertices are colinear. Any plane P transverse to each of the edges of the hexagon
intersects these edges in vertices of a pair of Desarguesian triangles, that is the
triangle A with vertices

A1 = V1V2 ∩ P A2 = V3V4 ∩ P A3 = V5V6 ∩ P

and the triangle B with vertices

B1 = V4V5 ∩ P B2 = V6V1 ∩ P B3 = V2V3 ∩ P

meet the requirements of Desargue’s theorem so that A1B1, A2B2, and A3B3 are
coincident. Dually, given a general point P in space, the triangle of planes A
composed of

A1 = span(V1V2P ) A2 = span(V3V4P ) A3 = span(V5V6P )

and the triangle of planes B composed of

B1 = span(V4V5P ) B2 = span(V6V1P ) B3 = span(V2V3P )
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P

V1

V5

V6

V4

V2

P

V3

Figure 4. Diagram depicting the Skew Hexagon Theorem in FP3

are Desarguesian triangles in the dual projective plane of the set of all planes through
the point P , that is A1 ∩ B1, A2 ∩ B2, and A3 ∩ B3 are coplanar. The map

P 7→ A1B1 ∩A2B2 ∩A3B3 P 7→ span((A1 ∩ B1)(A2 ∩ B2)(A3 ∩ B3))

extends to a skew-symmetric polarity of FP3.

Proof. The hexagon V1V2V3V4V5V6 is projectively equivalent to VeVτσVσ2VτVσVτσ2

so by proposition 4.1 there is a skew-symmetric polarity of FP3, D for which:

D : Vi 7→ span(Vi+2, Vi+3, Vi+4)

with i = 1, . . . , 6 and addition taken modulo 6. Now notice that D swaps opposite
edges of our hexagon. For instance:

D(V1V2) = D(V1) ∩D(V2) = span(V3, V4, V5) ∩ span(V4, V5, V6) = V4V5

Choose a plane P transverse to the edges of our hexagon. Then consider the
line A1B1 where A1 = V1V2 ∩ P and B1 = V4V5 ∩ P. This line passes through
both the lines V1V2 and V4V5 which are swapped by D, thus by proposition 4.2
the line A1B1 is preserved by D. Similarly, A2B2 and A3B3 are preserved. Since
span(A1B1, A2B2, A3B3) = P, we know that

D(P) = A1B1 ∩A2B2 ∩A3B3

Therefore these three lines are concurrent and intersect at the point D(P). By
duality the second half of the theorem follows. �

Remark 5. If we project a skew hexagon into a plane it projects to a configuration
ripe for us to apply Pappus’ theorem to. As our polarity is skew-symmetric, we
know that the dual to the point of projection is a plane containing that point. The
projection of this plane is a line, which by construction must contain the points of
intersection of the opposite sides of the hexagon. This is Pappus’ theorem. Finally,
as any Pappian configuration can be seen as a projection of a skew hexagon, we see
that in fact the skew hexagon theorem implies Pappus’ theorem.
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By equation (16), a direct application of the skew hexagon theorem tells us

(18) Πy
x(`∗(zeven, zodd)) = D(Πy

x(FP2))

Consequently, we will study this duality in much greater detail, especially in the
lemma below. But before this, we need another seemingly irrelevant proposition.
Recall at the start of this section we introduced the map x 7→ ρx from triples of
points on xl to representations of S3 into PGL(2, F ). We never discussed any of
this map’s properties, but here is an important one:

Proposition 4.4 (Commuting Involution). Given a faithful representation ρ :
S3 → PGL(2, F ), there are exactly two triples of points x 6= x′ such that ρx =
ρ = ρx′ . Moreover the projective transformation sending x to x′ is an involution
which commutes with ρ(υ) for all υ ∈ S3.

Proof. First we will find x and x′ from ρ. Since τ = (23), if ρx = ρ, it must be true
that ρ(τ)(X1) = X1. An involution has exactly two fixed points, so set X1 and X ′

1

to be the two fixed points of ρ(τ). After setting X1 in this manner, X2 and X3 are
forced by σ = (123) to be X2 = ρ(σ)(X1) and X3 = ρ(σ2)(X1). Similarly X ′

2 and
X ′

3 are forced.
We will check that these choices ensure ρx = ρ. Since ρ(σ)(X3) = X1 we see

that ρx(σ) agrees with ρ(σ) at three points and therefore ρx(σ) = ρ(σ). Also

ρ(τ)(X2) = ρ(τ)ρ(σ)(X1) = ρ(σ2)ρ(τ)(X1) = X3

And since ρx(τ) is an involution, ρ(τ)(X3) = X2. Again ρx(τ) and ρ(τ) agree at
three points and are equal. This shows ρx and ρ agree for generators σ, τ ∈ S3,
consequently ρx = ρ. Similarly it follows that ρx′ = ρ. Uniqueness of x and x′

follows by the rigidity of process by which we selected X1 and X ′
1.

If ρ = ρx = ρx′ , then the unique projective transformation J : x 7→ x′ must
commute with all of ρ since

ρ(υ−1) ◦ J ◦ ρ(υ)(Xi) = ρ(υ−1) ◦ J(Xυ(i)) = ρ(υ−1)(X ′
υ(i)) = X ′

i = J(Xi)

for all i. Thus by the 3-transitivity of PGL(2, F ), J = ρ(υ−1) ◦ J ◦ ρ(υ) and so J
and ρ(υ) commute. Because they commute, it follows that ρJ(x′) = ρ. Therefore
by the uniqueness of the triples x and x′ with the property that ρx = ρ, we know
J(x′) = x or J(x′) = x′. But the second possibility contradicts the fact that J is
not the identity, therefore J(x′) = x and so J is an involution. �

The above proposition tells us that J is a natural invariant of a representation
ρ, but we will find it easier notationally to associate the involution J with a triple
of points, so Jx will now refer to this involution which commutes with all of ρx.

Now we provide a connection between the symmetric polarity DQ described in
proposition 3.1 and the skew symmetric polarities of M.

Proposition 4.5. If γ is an involution then DQ◦(γ·) is a skew-symmetric polarity.

Proof. If γ is an involution, then because of remark 1 below proposition 3.1, we
know that (γ·) commutes with DQ so

(DQ ◦ (γ·))2 = DQ ◦ (γ·) ◦DQ ◦ (γ·) = DQ ◦DQ ◦ (γ·) ◦ (γ·) = D2
Q

Therefore (γ·) ◦ DQ is a polarity. Since γ is an involution, trace(γ) = 0. Now
recalling dotM(N,M) = trace(M · TN), we see that for M ∈ M,

dotM(DQ◦(γ·)(M),M) = dotM(T(γM)−1
,M) = trace(M(γM)−1) = trace(γ) = 0
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Thus M ∈ DQ ◦ (γ·)(M) for all M , and (γ·) ◦DQ is a skew-symmetric polarity. �

Now we provide an alternate definition of the skew-symmetric polarity D in
terms of the symmetric polarity DQ described in proposition 3.1.

Lemma 4.6 (Polarity Identity). The duality D is the same as DQ◦(Jx·)◦(ρx(τ)·),
where Jx is the involution appearing in proposition 4.4.

Proof. We will denote DQ ◦ (Jx·) ◦ (ρx(τ)·) by D̂. We know since Jx and ρx(τ)
commute that (Jx·) ◦ (ρx(τ)) is an involution, therefore by proposition 4.5, D̂ is a
skew-symmetric polarity. Next we will show that D and D̂ both act on our skew
hexagon in the same way, then by the skew hexagon theorem (theorem 4.3) we
know that this information determines the skew-symmetric polarity via an explicit
construction, so D = D̂.

Now recall that Hυ = Tρx(υ−1) from equation (12). First we will show D̂(Hτ ) =
Ve = He ∩Hτσ ∩Hτσ2 . Recall by remark 1, D̂ = (Jx·) ◦ (ρx(τ)·) ◦DQ.

D̂(Hτ ) = (Jx·) ◦ (ρx(τ)·) ◦DQ = (Jx·) ◦ (ρx(τ)·)(ρx(τ)) = Jx

So we must show that Jx = Ve = He ∩ Hτσ ∩ Hτσ2 . Since Jx is an involution,
Jx ∈ He = Tr0. It remains to show that Jx ∈ Hτσ and Jx ∈ Hτσ2 . Recall that Jx

commutes with ρx(υ) for all υ ∈ S3.
We will show that if T ∈ PGL(2, F ) is an involution commuting with Jx then

dotM(TT, Jx) = 0. We again apply the identity dotM(N,M) = trace(TN · M).
Here we have dotM(TT, Jx) = trace(T · Jx) = 0, since T · Jx is an involution.

Thus since Ve = Jx commutes with the involution ρx(τσ), dotM(Tρx(τσ), Jx) = 0
and so Jx ∈ Hτσ = Tρx(τσ). Similarly Jx ∈ Hτσ2 , so we have shown Ve = Jx and
D̂(Hτ ) = D(Hτ ).

Now we wish to show that Vυ = Jx · ρx(υ). As (·ρx(υ)) : Hυ′ 7→ Hυ′υ, it follows

(·ρx(υ))(Ve) = (·ρx(υ))(He ∩Hτσ ∩Hτσ2) = Hυ ∩Hτσυ ∩Hτσ2υ = Vυ

Therefore Vυ = Jx · ρx(υ) as claimed. We now show D̂(Hυ) = Vτυ as expected:

D̂(Hυ) = (Jx·) ◦ (ρx(τ)·) ◦DQ(Tρx(υ−1)) = (Jx·) ◦ (ρx(τυ)) = Jx · ρx(τυ) = Vτυ

Consequently we have shown that D̂ and D agree in their images of Hυ, and since
both D and D̂ are polarities, they also agree in their images of Hυ. By the skew
hexagon theorem, skew-symmetric polarities which agree on a skew hexagon are
equal, therefore D = D̂. �

Now that we have a more useful form of D we can quickly prove:

Proof of Steiner’s theorem II. We know Πy
x(`∗(zeven, zodd)) = D(Πy

x(FP2)) from
equation (18). Also DQ(Πy

x(FP2)) = Πy
x(O) where O = xl ∩ yl since DQ swaps a

point on the determinantal quadric with a plane tangent to the quadric, see theorem
2.1 and proposition 3.1. From lemma 4.6, we see that

(19) Πy
x(`∗(zeven, zodd)) = Jx · ρx(τ) ·Πy

x(O)

Now recalling proposition 3.4 which told us that points on Πy
x(xl) are characterized

by the fact that they all have the same kernel. Thus

ker(Πy
x(`∗(zeven, zodd))) = ker(Jx · ρx(τ) ·Πy

x(O)) = ker(Πy
x(O))

which implies Πy
x(`∗(zeven, zodd))) ∈ Πy

x(xl) and therefore `∗(zeven, zodd) ∈ xl.
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By substituting σx or σ2x for x we get see that the same argument shows that
`∗(zeven, σzodd) and `∗(zeven, σ2zodd) lie on xl. More specifically, if we let x′ = σx
then and defined z′even and z′odd accordingly, we see that:

z′even = (`(x′, y), `(x′, σy), `(x′, σ2y)) = (`(σx, y), `(σx, σy), `(σx, σ2y))
= (`(x, σ2y), `(x, y), `(x, σy)) = σzeven

And,

z′odd = (`(x′, τy), `(x′, τσy), `(x′, τσ2y)) = (`(σx, τy), `(σx, τσy), `(σx, τσ2y))
= (`(x, τσy), `(x, τσ2y), `(x, τy)) = σ2zodd

Thus,

(20) `∗(z′even, z′odd) = `∗(σzeven, σ2zodd) = `∗(zeven, σzodd)

Therefore `∗(zeven, σzodd) lies on xl as well. Similarly by substitution of σ2x for x
shows us that `∗(zeven, σ2zodd) lie on xl as well.

We still must show that `∗(zeven, υzodd) returns to the line yl when υ is odd. We
will prove this by investigating what happens when we switch x with y. For this
we define x′ = y and y′ = x. Then we define z′even and z′odd accordingly. We see
that since `(y, x) = `(x, y),

z′even = (`(x′, y′), `(x′, σy′), `(x′, σ2y′)) = (`(y, x), `(y, σx), `(y, σ2x))
= (`(x, y), `(x, σ2y), `(x, σy)) = τzeven

and for z′odd we see

z′odd = (`(x′, τy′), `(x′, τσy′), `(x′, τσ2y′)) = (`(y, τx), `(y, τσx), `(y, τσ2x))
= (`(x, τy), `(x, τσy), `(x, τσ2y)) = zodd

Therefore
`∗(z′even, z′odd) = `∗(τzeven, zodd) = `∗(zeven, τzodd)

which implies `∗(zeven, τzodd) ∈ x′l = yl. Similarly, we can see `∗(zeven, τσzodd) and
`∗(zeven, τσ2zodd) lie on yl. �

We have finally developed enough machinery that the final part of Steiner’s
theorem falls easily.

Proof of Steiner’s theorem III. Proposition 3.4 tells us that X ∈ xl implies that
img(Πy

x(X)) = X. Applying this fact to equation (19) above, we see that
(21)
`∗(zeven, zodd) = img(Jx · ρx(τ) ·Πy

x(O)) = Jx · ρx(τ) · img(Πy
x(O)) = Jx · ρx(τ)(O)

In the previous proof, when we set x′ = σx we saw equation (20). Therefore, by
applying (21), we see

`∗(zeven, σzodd) = `∗(z′even, z′odd) = Jx′ · ρx′(τ)(O) = Jσx · ρσx(τ)(O)

Now ρσx(υ) = ρx(σ2υσ), because ρx(σ)(x) = σ−1x as defined in equation (11), and
therefore Jx = Jσx and so

(22) `∗(zeven, σzodd) = Jσx · ρσx(τ)(O) = Jx · ρx(τσ2)(O)

Similarly, it follows that

(23) `∗(zeven, σ2zodd) = Jx · ρx(τσ)(O)



20 W. PATRICK HOOPER

Now by equations (21), (22), and (23) we know that `∗(zeven, υzodd) can be
determined from Jx, ρx, and O. This information is independent from y except for
the fact that O = yl ∩ xl. This proves the theorem. �

We define the Steiner map to be the return map SO : (FP1)3 → (FP1)3, such
that

SO : x 7→ (`∗(zeven, zodd), `∗(zeven, σ2zodd), `∗(zeven, σzodd))

Where the points `∗(zeven, υzodd) are constructed as before from x and any triple of
points y which are colinear with the point O. Now we accumulate a few corollaries
from our calculations. First from equations (21), (22), and (23) we have:

Corollary 4.7. SO(x) = (Jx · ρx(τ)(O), Jx · ρx(τσ)(O), Jx · ρx(τσ2)(O))

Corollary 4.8 (Permutations commute). Permutations commute with SO. How-
ever ρx(σ) anti-commutes with SO, that is SO ◦ ρx(σ)(x) = ρx(σ2) ◦ SO(x).

Proof. We will show that the generators σ, τ ∈ S3 commute with SO. We need
to understand how permuting x effects ρx. We can see ρυx(υ′) = ρx(υ−1υ′υ).
Therefore

SO(σx) = (Jx · ρx(τσ2)(O), Jx · ρx(τ)(O), Jx · ρx(τσ)(O)) = σSO(x)
SO(τx) = (Jx · ρx(τ)(O), Jx · ρx(τσ2)(O), Jx · ρx(τσ)(O)) = τSO(x)

Finally to show ρx(σ) anti-commutes with SO, we show ρx(σ)(SO(x)) = σSO(x).

ρx(σ)(SO(x)) = ρx(σ)(Jx · ρx(τ)(O), Jx · ρx(τσ2)(O), Jx · ρx(τσ)(O))
= (Jx · ρx(τσ2)(O), Jx · ρx(τσ)(O), Jx · ρx(τ)(O)) = σSO(x)

Now because σ commutes, ρx(σ)(SO(x)) = SO(σx) = SO(ρx(σ2)(x)), again by
recalling the definition of ρx from equation (11). �

Corollary 4.9 (Steiner’s Map is 2-1). SO(x) = SO(x′) if and only if ρx = ρx′ .
Thus the map SO is two to one, with SO(x) = SO(x′) if and only if Jx(x) = x′.

Proof. It is clear that SO(x) = SO(Jx(x)), since corollary 4.7 determines SO(x)
from O and ρx only. We claim that there is no other x′ such that SO(x) = SO(x′).

Now suppose SO(x) = SO(x′) = (A,B,C) ∈ (FP1)3. Then ρx(σ)(A) = C,
ρx(σ)(B) = A and ρx(σ)(C) = B and similarly for x′. Therefore ρx(σ) = ρx′(σ).

Given a representation ρ : S3 7→ PGL(2, F ), there is a related representation,
which we will call ρ′ and define as

ρ′(σ) = ρ(σ) and ρ′(τ) = Jρ · ρ(τ)

where Jρ is determined by ρ as in lemma 4.6. This can easily be checked to be a
representation. Also note that Jρ commutes with each ρ′x(υ), therefore Jρ′ = Jρ

and so (ρ′)′ = ρ.
Set D1 = O = xl ∩ yl, D2 = ρx(σ)(O) and D3 = ρx(σ2)(O) which would be

defined in the same way for x′ since ρx(σ) = ρx′(σ). Now by corollary 4.7,

ρ′x(τ)(Di) = ρ′x′(τ)(Di) = (SO(x))i

for each i. Thus ρ′x(τ) = ρ′x′(τ) and so the representations ρ′x and ρ′x′ are equal.
Consequently (ρ′x)′ = (ρ′x′)

′ which implies ρx = ρx′ . It follows then by lemma 4.4
that SO is 2-1. �
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Corollary 4.10. SO permutes triples x which together with O = xl ∩ yl form a
harmonic quadruple (a quadruple having cross ratio −1). If x′ is a triple of points
such that one of its points is O then SO(x′) together with O form a harmonic
quadruple.

Proof. We prove the first statement. Up to permutation of x and PGL(2, F ), a
harmonic quadruple must be O = T(1 : 0) and x = (T(0 : 1), T(1 : 1), T(−1 : 1)).
We can compute

ρx(τ) =
(
−1 0
0 1

)
ρx(σ) =

(
1 1
−3 1

)
Jx =

(
0 1
3 0

)
which can be checked by ensuring ρx(υ)(Xi) = Xυ(i) and Jx commutes with all
ρx(υ). Then by corollary 4.7, we compute SO(x) = (T(0 : 1), T(−1 : 1), T(1 : 1)) =
τx.

Next notice that Jx(x) = (T(1 : 0), T(3 : 1), T(−3 : 1)), so in particular O ∈
Jx(x). And by corollary 4.9, we know that SO(Jx(x)) = SO(x) = τx, a triple of
points which together with O form a harmonic quadruple. Now since any three
points in the plane differ only by a projective transformation, the three points of
Jx(x) and O, are projectively equivalent to any other triple x′ containing O modulo
permutation. Thus by Steiner’s theorem III, x′ and O determine SO(x′), so for any
triple of points x′ containing O it must be true that SO(x′) together with O form
a harmonic quadruple. �

These corollaries have given us a lot of useful information about the dynamics of
SO. In the next section, we will do an explicit calculation, which will give us much
stronger results.

5. Dynamics and The Twisted Cubic

In this section we will denote the set of orderless triples of points in FP1 by T .
Because SO commutes with permutation, it makes sense to consider instead the map
ŜO : T → T which we just define as the map that “forgets” order. Explicitly we
can describe ŜO as the map which takes a triple and gives it an arbitrary ordering,
then applies the map SO, and then forgets the ordering. This map is well defined
since SO commutes with permutation. Also we will frequently use the identification
of FP1 with F ∪∞, which turns the matrices of PGL(2, F ) into fractional linear
transformations of the form z 7→ az+b

cz+d . This makes our equations nicer, just as it
does in complex analysis.

Over algebraically closed fields, T is canonically isomorphic to FP3. To see
this, consider the map which takes three points to the homogeneous polynomial of
degree three with the three points as roots. The space of such polynomials modulo
scalar multiplication is FP3. Explicitly, our map is:

(24) Σ : {a, b, c} 7→ (a + b + c, ab + ac + bc, abc)

and projectivizes by setting a = a1
a0

, b = b1
b0

, and c = c1
c0

Σ : {(a0 : a1), (b0 : b1), (c0 : c1)} 7→
{ a0b0c0 : a1b0c0 + a0b1c0 + a0b0c1 :

a1b1c0 + a1b0c1 + a0b1c1 : a1b1c1 }

The map is tri-linear, that is, linear in each of the points. Thus for example, image
of the space of all triples of points containing a particular point P is a planar subset
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of PP ⊂ FP3. We will be considering the map Σ ◦ ŜO ◦ Σ−1 in order to gain a
better understanding of the global properties of the map ŜO.

The image of all triples for which all three points are equal is the twisted cubic

(25) T = {Σ(A,A, A)|A ∈ FP1} = {(a3
0 : 3a2

0a1 : 3a0a
2
1 : a3

1)|(a0 : a1) ∈ FP1}
A twisted cubic is a 1-dimensional variety of degree 3 with many beautiful prop-
erties. In particular, for every point in FP3 r T there is a unique secant (a line
passing through T at two points) or tangent which passes through that point. A
weaker version of this fact follows from lemma 5.2 below, but first we have

Proposition 5.1. Given π ∈ PGL(2, F ), there is a π′ ∈ PGL(4, F ) such that
Σ(πA, πB, πC) = π′Σ(A,B,C) for all A,B,C ∈ FP1. Moreover, such a π′ pre-
serves T.

Proof. This follows from the interpretation of Σ as the projectivization of symmetric
polynomials since each coordinate of Σ(πA, πB, πC) will be a symmetric polynomial
of degree 3 and therefore a linear sum of the coordinates of Σ(A,B,C). Also such
a π′ must preserve T, since the map (A,B,C) 7→ (πA, πB, πC) preserves the set of
triples consisting of three identical points. �

If x ∈ T , there is some ambiguity in the definition of ρx. In particular ρx is only
defined up to inner automorphisms of S3. We define the “relation” a ∼ b when
a ∈ T is a triple of distinct points and b ∈ T as a ∼ b if and only if ρa(σ)(b) = b as
an orderless triple. This is well defined since if ρa(σ)(b) = b then also ρa(σ2)(b) = b.
Now we define the set Ox = {x′ ∈ T |x ∼ x′}. This set is relevant because corollary
4.8 told us that SO anti-commutes with ρx(σ), therefore the orbit of x under ŜO

lies in Ox. More concisely, the set Ox is invariant under the action of ŜO.
First, we are interested in the image Σ(Ox).

Lemma 5.2. Σ(Ox) is a secant of T, that is Σ(Ox) is a line which passes through
T at two points. Further, every secant arises as Σ(Ox′) for some triple x′ of distinct
points.

Proof. Fix x. We will first show that if we suppose Σ(Ox) is a secant then every
secant arises from some Σ(Ox′). Since Σ(Ox) is a secant, by definition it passes
through two points on T say Σ(f1, f1, f1) and Σ(f2, f2, f2). Now choose an arbitrary
secant l which must contain 2 points of T say Σ(f ′1, f

′
1, f

′
1) and Σ(f ′2, f

′
2, f

′
2). There

is a π ∈ PGL(2, F ) such that π(f1) = f ′1 and π(f2) = f ′2. By proposition 5.1 above,
then there is a π′ ∈ PGL(4, F ) fixing T such that Σ(πA, πB, πC) = π′Σ(A,B, C).
For all distinct triples y, it is true that ρπy(υ) = π ◦ ρy(υ) ◦ π−1 because

ρπy(υ)(πXi) = π ◦ ρy(υ) ◦ π−1(πXi) = π ◦ ρy(υ)(Xi) = πXυ(i)

Thus y ∼ x implies πy ∼ πx and so Ox′ = πOx. Then if we set x′ = πx, we have

π′(Σ(Ox)) = Σ(πOx) = Σ(Ox′)

Moreover, since π(fi) = f ′i for each i we know that π′(Σ(fi, fi, fi)) = Σ(f ′i , f
′
i , f

′
i).

Therefore if Σ(Ox) is a secant passing through Σ(fi, fi, fi) for each i then Σ(Ox′) =
π′(Σ(Ox)) is a secant passing through each Σ(f ′i , f

′
i , f

′
i) which must be l as desired.

So we only need to show Σ(Ox) is a secant of T for some x. This will be an
explicit calculation. We will think of FP1 as F ∩ {∞}. First, as in the proof of
proposition 4.1, by the 3-transitivity of PGL(2, F ) and because of the paragraph
above we can choose x arbitrarily. We choose x = (1, ω, ω2) with ω a cube root of



FROM PAPPUS’ THEOREM TO THE TWISTED CUBIC 23

unity (ω3 = 1 but ω 6= 1). This gives us that ρx(σ) : z 7→ ωz. Now if y ∼ x then
y = {z, ρx(σ)(z), ρx(σ2)(z)} for some z therefore y = {z, ωz, ω2z}. Thus

(26) Ox = {{z, ωz, ω2z}|z ∈ F ∪ {∞}}

We compute the image of y under Σ using equation (24)

(27)
Σ(y) = Σ({z, ωz, ω2z}) = ((1 + ω + ω2)z, (ω + ω2 + 1)z2, z3)

= (0, 0, z3) = (1 : 0 : 0 : z3)

Thus Σ(Ox) = {(a : 0 : 0 : b)|(a : b) ∈ FP1}, which is a line in FP3. We
must show that this line is a secant. 0 and ∞ are fixed points of ρx(σ) there-
fore {0, 0, 0}, {∞,∞,∞} ∈ Ox and therefore the line Σ(Ox) must pass through
Σ({0, 0, 0}) and Σ({∞,∞,∞}), and so Σ(Ox) is a secant line of T. �

Remark 6 (Secants to the twisted cubic cover FP3). We have shown that Σ(x) lies
on a secant of T if x consists of distinct points. Since if x consists of three identical
points Σ(x) ∈ T, the only points left to check are of the form x = {A,A, B}.
We can check that as we vary B the image Σ({A,A, B}) varies in a line. More
careful examination would reveal that Σ({A,A, B}) lies on the tangent to T through
Σ({A,A, A}). This together with the fact that Σ is isomorphic to T would show
that every point lies on a unique secant or tangent of T.

Proposition 5.3. If x = (1, ω, ω2) and O is not fixed by ρx(σ) then when restricted
the line l = Σ(Ox) the function Σ ◦ ŜO ◦ Σ−1 acts as the map z 7→ z2 up to
conjugation in PGL(2, F ) acting on l. Moreover, this conjugation identifies the
points at which the secant line l passes through T with 0 and ∞.

Proof. This proposition will continue the calculation of lemma 5.2 and use corollary
4.7 as the tool to obtain a formula. We will continue to think of FP1 as F ∪ {∞}.

In order to use corollary 4.7, we need to know the location O = xl∩yl ∈ F ∪{∞}.
We will show that the map Σ ◦ ŜO ◦ Σ−1 is conjugate to the map z 7→ z2 with the
desired properties by an explicit calculation. By reversing equation (27),

Σ ◦ ŜO ◦ Σ−1((0, 0, z)) = Σ ◦ ŜO({ 3
√

z, ω 3
√

z, ω2 3
√

z})

Notice the choice of 3
√

z is unimportant, since essentially this is a set of all 3
√

z. Set
x′ = { 3

√
z, ω 3

√
z, ω2 3

√
z}. In order to apply 4.7, we need to know ρx′ and Jx′ . Here

are our candidates:

ρx′(σ) : t 7→ ωt ρx′(τ) : t 7→
3√z2

t Jx′ : t 7→ −t(28)

It can be checked that ρx′(σ) and ρx′(τ) act as they should on x′ and that Jx′ is
an involution commuting with both ρx′(σ) and ρx′(τ). Then

ŜO(x′) = (
− 3
√

z
2

O
,
−ω2 3

√
z
2

O
,
−ω 3

√
z
2

O
)

So by a calculation

Σ ◦ ŜO(x′) = (0, 0,
−z2

O3
)

and

(29) Σ ◦ ŜO ◦ Σ−1((0, 0, z)) = Σ ◦ ŜO(x′) = (0, 0,
−z2

O3
)
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Now to show this is conjugate to the map z 7→ z2 we introduce the projective
embedding θ : F ∪ {∞} → Σ(Ox) defined as θ(w) = (0, 0,−O3w). Then

θ−1 ◦ Σ ◦ ŜO ◦ Σ−1 ◦ θ(w) = θ−1 ◦ Σ ◦ ŜO ◦ Σ−1((0, 0,−O3w))
= θ−1((0, 0, −(−O3w)2

O3 ) = θ−1((0, 0,−O3w2)) = w2

Thus this map is conjugate to w 7→ w2. We need to show that this act of conjugation
sends 0 and ∞ to points Σ(Ox)∩T. From the end of the proof of lemma 5.2 these
fixed points are Σ({0, 0, 0}) = (0, 0, 0) = (1 : 0 : 0 : 0) and Σ({∞,∞,∞}) =
(0, 0,∞) = (0 : 0 : 0 : 1). These points are sent to 0 and ∞ by θ. �

Well, what happens when O is a fixed point of ρx(σ)? Well, equation (29) still
holds and O = 0 or O = ∞, therefore

Σ ◦ ŜO ◦ Σ−1((0, 0, z)) = (0, 0,
−z2

O3
)

which means that the image of Σ ◦ ŜO ◦ Σ−1 is Σ({F, F, F}) where F is the fixed
point of ρx(σ) other than O.

Theorem 5.4 (Global action of SO). The map Σ ◦ ŜO ◦Σ−1 preserves the secants
to the twisted cubic T which do not pass through Σ({O,O, O}). The action of this
map when restricted to such a secant line l is the map z 7→ z2 up to conjugation in
PGL(2, F ), the group of projective transformations l. This conjugation sends the
points at which the secant passes through the T to 0 and ∞, and sends the point
l ∩ PO to −1, determining this conjugation. Recall PO is the plane consisting of
the image under Σ of the set of all triples containing O.

Proof. If l is a secant not passing through Σ({O, O, O}) then analogously to the
proof of lemma 5.2, we will show the choice of such an l does not matter.

First if l does not pass through Σ({O,O, O}) then it does not lie in the plane
PO, since the points at which it cross T cannot lie in PO, because these points
consist of three identical points which cannot be O.

Now, if l and l′ are secants passing through T at points Σ({fi, fi, fi} and
Σ({f ′i , f ′i , f ′i} respectively for i = 1, 2. We can choose π ∈ PGL(2, F ) preserving
O and mapping fi 7→ f ′i . The map π commutes with ŜO, since ŜO is determined
by O which is preserved by π. Then by proposition 5.1, there is a π′ for which
π′(Σ(A,B,C)) = Σ(πA, πB, πC). In particular then π′ commutes with Σ◦ŜO◦Σ−1

because π commutes with ŜO. Also π′(Σ({fi, fi, fi})) = Σ({f ′i , f ′i , f ′i}) for each i,
and therefore π′ : l 7→ l′. Notice that also

π′(l ∩ PO) = π′(l) ∩ π(PO) = l′ ∩ PO

since π : O 7→ O and thus preserves the image of the set of all triples containing
O, which therefore by definition of π′ implies that π′ must preserve PO. Therefore
if the action of Σ ◦ ŜO ◦ Σ−1 on a secant l is determined by the points l ∩ T and
l ∩ PO as claimed by the theorem, if the statement is true for l then it is true for
l′, because the points l ∩T and l ∩ PO are sent to l′ ∩T and l′ ∩ PO by π′ which
commutes with Σ ◦ ŜO ◦ Σ−1.

Without loss of generality, assume O is not 0 or ∞. Then proposition 5.3 told
us that the action of Σ ◦ SO ◦ Σ−1 on l = Σ(Ox) is z 7→ z2 up to conjugation
in PGL(2, F ). Moreover, we know that the points of l ∩ T serve the roll of 0
and ∞ in the map z 7→ z2. Consider the triple of points {O, A,B} such that
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Σ({O,A,B}) = l ∩ PO. By corollary 4.10, we know that H = ŜO({O,A,B}) is a
triple of points harmonic to 0 and that ŜO(H) = H. The map z 7→ z2, has 3 fixed
points, 0, 1, and ∞. Therefore since the points l∩T correspond to the other two of
them, Σ(H) must correspond to 1. Then Σ({O,A,B}) = l ∩ PO must correspond
to −1. Therefore Σ ◦ ŜO ◦ Σ−1 acts as claimed on l = Σ(Ox). The preceding
paragraph then tells us that it acts as claimed on any line l′ secant to T and not
passing through Σ({O,O, O}). �

We can explicitly compute the map Ψ = Σ ◦ ŜO ◦ Σ−1 for O = (0 : 1) as

Ψ((a : b : c : d)) =
(2b6 − 18ab4c + 27a2b2c2 + 54a3c3 + 108a2b3d− 486a3bcd + 729a4d2 :
3b5c− 45ab3c2 + 135a2bc3 + 81ab4d− 324a2b2cd− 243a3c2d + 729a3bd2 :
−3b4c2 + 54a2c4 + 18b5d− 54ab3cd− 162a2bc2d + 243a2b2d2 :
−2b3c3 + 9abc4 + 9b4cd− 54ab2c2d + 27a2c3d + 27ab3d2)

Remark 7 (The Real Case). In theorem 5.4 there is an explicit parameterization
of a secant l of T, namely the one sending l ∩ T to 0 and ∞ and sending l ∩ PO

to −1. It can be checked that if a triple has real cross ratio with respect to O, it is
sent to the unit circle in this parameterization by Σ. Also an order three element of
PGL(2, R) has imaginary fixed points, so it will never happen that ρx(σ) preserves
O = xl ∩ yl. Consequently, for all x, Σ(Ox) is canonically identified with the unit
circle of C with Σ◦ ŜO ◦Σ−1 acting as z 7→ z2, a double wrapping action on Σ(Ox).
In this case ŜO is genuinely 2− 1 and onto, and the only fixed points are triples of
points harmonic to O.
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[Wit79] Danuta Witczyńska, Pappus’ configuration in the projective space P n, Demonstratio
Math. 12 (1979), no. 3, 593–598.

Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794

E-mail address: pat@math.sunysb.edu


