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Can you place a small billiard ball on a frictionless triangular pool table
and hit it so that it comes back to its its original location traveling the same
direction? This is a long standing open question, but the list of triangles
where it is known that you can do this is growing. This paper adds some
almost isosceles triangles to this list.

Mark the edges of a triangle T by the numbers 1, 2 and 3. The symbolic

dynamics sγ of a periodic billiard path γ is the bi-infinite sequence of edges
the billiard path hits, which we interpret as a bi-infinite sequence in {1, 2, 3}.
A periodic billiard path γ in T is called stable if there is an open set of
triangles U containing T so that for each T ′ ∈ U there is a periodic billiard
path γ′ in T ′ with sγ = sγ′ .

We define Tx to be the obtuse isosceles triangle with two acute angles
with measure α = π

2x
and one obtuse angle with measure (1 − 1

x
)π. The

purpose of this paper is to prove the following:

Theorem 1 For every x > 2 with x /∈ Z there is a stable periodic billiard

path in Tx.

A period of a periodic billiard path is a sub-arc which starts and ends
with the billiard ball traveling in the same direction at the same point on the
interior of the triangle. A symbolic period is a finite sequence of edges hit in
a period, that is a finite word in the letters {1, 2, 3}.

The theorem is proved by studying a two parameter family of billiard
paths Yn,m. We will mark the long side of the obtuse isosceles triangle 3 and
use 1 and 2 for the shorter sides. We define the words

Xn = (31)n−1(32)n−1 (1)
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We will show the words Xn are symbolic periods for unstable periodic billiard
paths in isosceles triangles. We use these words to build a 2-parameter list
of new words:

Yn,m = 1(Xn)
m32 (2)

Theorem 1 is in fact a corollary of the result:

Theorem 2 For every x > 2 with x /∈ Z, let n ∈ Z with n < x < n + 1.
Then, there exists an m ∈ Z and a stable periodic billiard path in Tx with

symbolic period Yn,m.

1 Stability

First we will prove that if in fact we can find a periodic billiard path with a
symbolic period given by Yn,m, then it must be stable. This follows from a
well known result:

Lemma 3 (Odd periods are stable) If γ is a periodic billiard path in the

triangle T which hits an odd number of edges in its period, then γ is stable.

Proof: The trick to the proof is look at what we will call the unfolding of
a periodic billiard path. Picture our triangle in the plane. Each time the
billiard ball hits the edge of our triangle, reflect the triangle in that edge and
continue the path in that new triangle. The resulting path is a line in an
bi-infinite chain of triangles U(T, sγ) as in figure 1.

Figure 1: The unfolding for the Fagnano curve, which has symbolic period
123.

If the periodic billiard path has an odd period then U(T, sγ) is invari-
ant under a glide reflection GT . The line is the axis of this glide reflection.
Generic orientation reversing isometries of the plane are glide reflections.
Deform the triangle T to a triangle T ′. If T ′ is close enough to T , then the
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unfolding of U(T ′, sγ) is also invariant under a glide reflection GT ′. If the
axis of GT ′ stays within the unfolding and avoids the vertices of the triangles,
then we can fold up the unfolding and produce a periodic billiard path in T ′

with symbolic dynamics sγ. Rotate the unfolding so that it is horizontal. We
must check that the vertices of U(T, sγ) which lie above the axis of GT must
still lie above the axis of GT ′ in the unfolding U(T ′, sγ). By the invariance
of the unfolding U(T ′, sγ) under GT ′ , we only need to check finitely many
vertices. The distances from the vertices to the axis vary smoothly with the
deformation of the triangle. So this is an open condition on T ′. Therefore,
there is an open set of triangles containing T with periodic billiard paths
with symbolic dynamics sγ. ♦

2 The unstable family Xn

We need to show that there are periodic billiard paths in these obtuse trian-
gles with combinatorics given by Xn. The fact that these paths are unstable
is irrelevant to our arguments.

Proposition 4 For every x > n − 1 ∈ Z the triangle Tx has a periodic

billiard path with symbolic period Xn.

A

M1

M2M3

M4

M5

Figure 2: An unfolding for the word X5. One period is shown.

Proof: Let M be the midpoint of the longest side of Tx. By symmetry
any billiard path which passes through M twice must close up. As shown in
figure 2, the measure of angle M1AMn = 2(n − 1)α = (n−1)π

x
is less than π

precisely when x > n−1. In this case the polygon AM1M2 . . .Mn is a convex
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subset of the unfolding. Therefore, the line segment M1Mn is contained in
the unfolding. It is easy to verify that the symbolic period of the resulting
billiard path is Xn. ♦

If we unfold a periodic billiard in a triangle Tx, there is a maximal strip
of parallel lines contained in the unfolding. Each parallel line folds up to a
periodic billiard path with the same symbolic period. The leading vertices

of an unfolding are the vertices which are contained in the boundary of this
maximal strip.

Proposition 5 For every x > n ∈ Z the leading vertices of the billiard path

with combinatorics Xn are the obtuse vertices of the rhombus containing M1

and Mn.

Proof: Note that the unfolding of the word Xn in an isosceles triangle is
invariant under a glide reflection which sends M1 to Mn. Also, a rotation by
180 degrees about M1 preserves the unfolding. We will slowly go through the
vertices of the unfolding (modulo these automorphisms) to show that they
are not leaders. It suffices to show that the remaining vertices are further
from the axis of the glide reflection. We label the claimed bottom leaders
L1 and Ln and the claimed top vertices L′

1 and L′

n. Note that there are
automorphisms of the unfolding which take L1 to each of the other claimed
leaders. Therefore, the distance of each to the axis of the glide reflection is
the same.

Ln

L′

n

a2

A

a1

L1

L′

1

Figure 3: The point A and the points on the arcs a1 and a2 can not be
leaders.

First we will check that the vertex labeled A is not a leader in figure 3.
The measure of angle L1ALn = 2nα = nπ

x
, which is less than π whenever
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n < x. When n < x, the point A lies further below the line than L0 and Ln,
so A cannot be a leader.

The remaining vertices we need to consider lie on two arcs, a1 and a2 of
figure 3. The arcs are pieces of circles centered at A. The angle associated
to the arcs is always less than π when n < x. For each i, the convex hull
of L′

1, L′

n, and arc ai contains the segment L′

1L
′

n as a boundary component.
Therefore all other points on the arc are further from the axis of the glide
reflection and cannot be leaders. ♦

We will always normalize lengths so that the short side of the triangle
Tx has length 1. We can compute the length translated by the glide reflec-
tion preserving the unfolding of the word Xn explicitly (this is the distance
between M1 and Mn in figure 2)

l = sin((n − 2)α) + sin(nα) (3)

We will need this in the next section.

3 The stable family Yn,m

The word Yn,m has odd length. This tells us that any periodic billiard path
with combinatorics Yn,m is stable. Also for odd words, it is easy to compute
the direction of the translational holonomy.

Proposition 6 The translation vector of the holonomy of the unfolding of

an isosceles triangle by the word Yn,m is parallel to the long side of Tx in the

first triangle of the unfolding. See figures 4 and 5.

Proof: We will prove that there is reflective symmetry of the unfolding which
preserves the first triangle and swaps edges marked 1 with edges marked
2. Such a symmetry of the unfolding induces a symmetry of the symbolic
dynamics. The word Yn,m should be invariant under the “symmetry” which
reverses order and swaps the letter 2 with the letter 1.

Recall Yn,m = 1((31)n−1(32)n−1)m32. Let Wn,m be the word Yn,m written
backwards with the letter 1 swapped with the letter 2.

Wn,m = 13((13)n−1(23)n−1)m2
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M1

C

D

P

Figure 4: An unfolding for the word Y4,1

But this is the same as Wn,m = 1((31)n−1(32)n−1)m32. So Wn,m = Yn,m.
Therefore, the unfolding of an isosceles triangle according to the word

Yn,m, exhibits this reflective symmetry. The axis of the glide reflection is
preserved by this reflection but its orientation is reversed. The same is true
for the long side of the first triangle of the unfolding. Therefore, this edge
and the line preserved by the glide reflection must be parallel. ♦

A billiard path in an obtuse isosceles triangle that starts parallel to the
long side and later hits the midpoint of the long side must close up by sym-
metry. These are exactly the type of paths we are looking for.

We will break the proof of theorem 2 into two cases. This is needed
because the leading vertices are different in each case. The first case is
easiest.

Lemma 7 For each n < x ≤ n + 1
2

there is a periodic billiard path in Tx

with combinatorics Yn,1.

Proof: Given the triangle Tx, unfold the triangle according to the word Yn,1.
There is a first midpoint of a long side, M1, so that a rotation by π fixing
M1 preserves the unfolding. See figure 4. Let D be the obtuse vertex of the
first triangle of the unfolding. Let C be the midpoint of the opposite side.
By symmetry, it suffices to show that the line segment connecting M1 to the
segment CD orthogonally is contained in the unfolding.

The measure of angle CPM1 is 2nα = nπ
x

< π for n < x. Thus the

orthogonal projection of M1 to CD lies below C.
To see the orthogonal projection of M1 lies above D, first note that the

length |PM1| is strictly less than |PD|. Thus the orthogonal projection of
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M1 to CD lies above D so long as 2∠CPD +∠DPM1 ≥ π. We evaluate the
left hand side:

2∠CPD + ∠DPM1 = (2n + 1)α =
(2n + 1)π

2x

Therefore, the orthogonal projection of M1 lies above D when x ≤ 2n+1
2

. ♦

M1

M3

M2
C

D

LP

Figure 5: An unfolding for the word Y4,2

The second case is more complicated. In fact our result is more easily
proved non-constructively. A similar proof as the one given above could be
given, but I believe this would make the argument far less clear. Consider
the case of Yn,2. A sample unfolding is shown in figure 5. Here, we would
show that for some interval of isosceles triangles, the orthogonal projection
of M2 to the segment CD is entirely contained in the unfolding. Note that
when the measure of angle ∠CPL < π, the point L becomes a new leader
since it is below P . This occurs exactly when x > n + 1

2
(or α < π

2n+1
).

Thus, to show that Yn,2 is a symbolic period for billiard path in a particular
triangle, we would have to show that the orthogonal projection of M2 to CD
passes below L and above D.

Lemma 8 For each n + 1
2

< x < n + 1 there is a periodic billiard path in Tx

with combinatorics Yn,m for some m ∈ N.

Proof: Consider the unfolding of Tx according to the infinite word 1(Xn)∞.
See figure 6. We will show that there is a Mm so that the orthogonal pro-
jection of Mm to CD passes below L and above D. A line through Mm and
orthogonal to CD extends to a periodic billiard path with symbolic dynamics
Yn,m.
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The crucial observation is that, because X4 is the combinatorics of a
periodic billiard path, there is an infinite rectangular strip contained in the
unfolding 1(Xn)

∞. A beam of light shot orthogonally to CD passes below L
and above D and then enters this strip. Once inside the strip, the beam of
light will continue unobstructed until it hits the line containing {Mi}. We
will show that the beam of light is wider than the vertical change between
each Mi and Mi+1. It follows that some Mi must be hit by the beam of light.
This path generates our desired periodic billiard path.

M1 M3

M2C

D
LP

Figure 6: An unfolding for the word 1(X4)
∞

Fix coordinates so that P = (0, 0). Then D = (− cos α,− sin α) and

L =
(

− cos ((2n + 1)α),− sin ((2n + 1)α)
)

. Let πy be projection to the

y-coordinate. Let f be the function which maps the angle α to the difference
between the y coordinate of L and D.

f(α) = πy(L) − πy(D) = sin α − sin
(

(2n + 1)α
)

(4)

After some extensive trigonometry, we can reduce it into a more convenient
form.

f(α) = sin α − (sin α cos 2nα + sin 2nα cos α)
= sin α − sin α(cos2 nα − sin2 nα) − (2 sin nα cos nα cos α)
= 2 sin α sin2 nα − 2 sin nα cos nα cos α
= −2 sin nα(− sin α sin nα + cos nα cos α)
= −2 sin nα cos(n + 1)α

(5)

If πy(D) < πy(M1) < πy(L) then we can draw a segment connecting M1

to the segment CD orthogonally. As in the previous lemma, this segment
would extend to a periodic billiard path with symbolic period Yn,1. Let us
now check that πy(M1) < πy(L). We compute

πy(M1) =
− sin ((2n + 1)α) − sin ((2n − 1)α)

2
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So πy(M1) < πy(L) whenever

sin ((2n − 1)
π

2x
) > sin ((2n + 1)

π

2x
)

Which is certainly true when n + 1
2

< x < n + 1 (these angles are close
to π). We will therefore assume that πy(M1) < πy(D) because otherwise
M1 projects orthogonally to the interval CD and we would have a periodic
billiard path with symbolic period Yn,1.

Now we will use the fact that the word Xn is a periodic billiard path in
Tx. In the unfolding of the word 1(Xm)∞, the vector Mi+1 − Mi is invariant
under choice of i. Further Mi+1 − Mi travels in direction (n + 1)α − π

2
. We

denote the distance from Mi to Mi+1 by l. Thus, πy(Mi) is an evenly-spaced
increasing sequence. Let g(α) = πy(Mi+1) − πy(Mi) which depends on α.
Using equation 3 we see

g(α) = l sin((n + 1)α − π
2
)

=
(

sin((n − 2)α) + sin(nα)
)(

− cos((n + 1)α)
)

= − cos((n + 1)α)(2 cosα sin((n − 1)α))
= −2 cos α sin((n − 1)α) cos((n + 1)α)

(6)

If g(α) < f(α) then there must be an Mm which projects to CD under L as
desired. From the formulas above we see that in fact,

f(α)

g(α)
=

sin(nα)

cos α sin((n − 1)α)
(7)

The graph of this function of α is depicted in figure 7. When n+ 1
2

< x < n+1,
then π

2n+2
< α < π

2n+1
. Therefore

0 < (n − 1)α < nα < π
2

and sin(nα) > sin((n − 1)α) (8)

So that f(α)
g(α)

= sin(nα)
cos α sin((n−1)α)

> 1
cos α

> 1. ♦
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Figure 7: The graph of the ratio f(α)
g(α)

of equation 7 for 0 < α < π
4
. We take

the integer n = floor( π
2α

). The white regions are the values of α we consider
in lemma 8.
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