
AN INFINITE SURFACE WITH THE LATTICE PROPERTY I:
VEECH GROUPS AND CODING GEODESICS

W. PATRICK HOOPER

Abstract. We study the symmetries and geodesics of an infinite translation surface which
arises as a limit of translation surfaces built from regular polygons, studied by Veech. We find
the affine symmetry group of this infinite translation surface, and we show that this surface
admits a deformation into other surfaces with topologically equivalent affine symmetries.
The geodesics on these new surfaces are combinatorially the same as the geodesics on the
original.

In this paper, we begin a systematic study of the geometric and dynamical properties
of the surface S1 shown below. This surface arises from a limit of surfaces built from two
affinely regular n-gons as n→∞.

Figure 1. The surface S1 is built from two infinite polygons in the plane:
The convex hulls of the sets {(n, n2) : n ∈ Z} and {(n,−n2) : n ∈ Z}.
Roman numerals indicate edges glued by translations.

This study is motivated by work of Veech which shows that surfaces built in a similar
manner from two regular polygons have special geometric and dynamical properties. See the
original work of Veech [Vee89] or the survey [MT02]. In short, these surfaces exhibit affine
symmetries analogous to the action of SL(2,Z) on the square torus.

The surface S1 also has affine symmetries described by a lattice in SL(2,R). Furthermore,
we will explain how S1 arises from a limit of Veech’s surfaces built from regular polygons.
However, previous geometric and dynamical theorems on such surfaces do not directly apply
to S1 because this surface has infinite area, infinite genus, and two cone singularities with
infinite cone angle. This motivates the question: Does the infinite genus surface S1 exhibit
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“nice” geometric and dynamical properties? The purpose of this sequence of articles is to
explain that S1 has many such nice properties.

In this paper, we show the following:

• We show that the orientation preserving affine symmetry group is the congruence
two subgroup of Γ2 ⊂ SL(2,Z).
• We describe the group of affine automorphisms of S1. That is, the group of homeo-

morphisms S1 → S1 which preserve the affine structure of S1.
• We find a deformation of the surface S1 given by c 7→ Sc for c ≥ 1. This deforma-

tion has the property that each affine automorphism of S1 is isotopic to an affine
automorphism of Sc.
• We show that S1 and Sc have isotopic geodesics for all c > 1.

This paper is structured as follows. In the next section, we construct the surfaces Sc, and
explain how they relate to regular polygons. In section 2, we provide background on the
subject of translation surfaces and Veech’s work. In section 3, we give rigorous statements of
the results mentioned above. We spend the remainder of the paper proving these statements.

1. The limiting process

Here is a dynamical way to describe a regular n-gon. Consider the rotation given by

Rt =

[
cos t − sin t
sin t cos t

]
∈ SO(2,R).

The regular n-gon is the convex hull of the orbit of the point (1, 0) under the group generated
by the rotation R 2π

n
.

In order to take a limit we conjugate this rotation by the affine transform St : (x, y) 7→
( y

sin t
, x−1

cos t−1
). The purpose of St is to normalize three vertices of the polygons. We have

St(1, 0) = (0, 0), St(cos t, sin t) = (1, 1), and St(cos t,− sin t) = (−1, 1).

Setting c = cos t and defining Tc = St ◦Rt ◦S−1
t yields the affine map Tc : R2 → R2 given by

(1) Tc : (x, y) 7→
(
cx+ (c− 1)y + 1, (c+ 1)x+ cy + 1

)
.

Let Q+
c be the convex hull of the set of points {P k

c = T kc (0, 0)}k∈Z. For c = cos 2π
n

, Q+
c is an

affinely regular n-gon. For c = 1 the collection of forward and backward orbits of (0, 0) is the
set of points {(n, n2) | n ∈ Z}, the integer points on the parabola y = x2. Finally for c > 1,

Figure 2. The translation surface Scos 2π
7

and Scos π
4

are built from pairs of

affinely regular polygons.
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Figure 3. The surface Sc with c = 5
4

is shown with some geodesic segments
joining singularities.

the orbit of (0, 0) lies on a hyperbola. Assume c = cosh t. Up to an affine transformation,
the orbit of (0, 0) is {(coshnt, sinhnt) | n ∈ Z}.

We will use Q+
c to build our translation surfaces. Let Q−c be the image of Q+

c under a
rotation by π around the origin. Each edge in Q+

c is parallel to its image in Q−c . We identify
each edge of Q+

c to its image edge in Q−c by translation (rather than rotation). We call the
resulting translation surface Sc. See figure 2 for some of the cases with c < 1. The case S1

is drawn in figure 1, and S 5
4

is shown in figure 3.

Observe that for each k, the map c 7→ P k
c = T kc (0, 0) is continuous. For this reason, we can

think of the surface S1 as a limit of the surfaces Scos 2π
n

as n→∞ and cos 2π
n
→ 1. Similarly,

we view c 7→ Sc for c ≥ 1 as a continuous deformation of translation surfaces. Concretely,
we have the following:

Proposition 1 (A family of homeomorphisms). There is a family of homeomorphisms hc,c′ :
Sc → Sc′ defined for c ≥ 1 and c′ ≥ 1 which satisfy the following statements.

• hc,c is the identity map, and hc,c′ ◦ hc′,c′′ = hc,c′′.
• hc,c′ sends singular points to singular points.
• hc,c′(Q+

c ) = Q+
c′ and hc,c′(Q

−
c ) = Q−c′ .

• Let B be the bundle of the surfaces with singularities removed, Sc r Σ, over the
ray {c : c ≥ 1}. This bundle is taken to be locally isometric to R3. The map
B×{c′ : c′ ≥ 1} → B which sends the pair consisting of a point x ∈ Sc and a c′ ≥ 1
to the point hc,c′(x) ∈ Sc′ is continuous in the metric topology.

Proof. To construct such a family of maps, we triangulate each Q±c in the same combinatorial
way, and then define hc,c′ piecewise, so that it affinely maps triangles to triangles. �

2. Background

Here we will briefly introduce some essential ideas in the subject of translation surfaces.
See [MT02] for more detail.
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A translation surface S is a collection of polygons in the plane with edges glued pairwise
by translations. Any point in the interior of a polygon or in the interior of an edge has a
neighborhood with an injective coordinate chart to the plane, which is canonical up to post
composition with a translation. The vertices of the polygons can be cone singularities with
cone angle which is an integer multiple of 2π. Infinite cone angles can arise if infinitely many
polygons are used (as for S1).

Suppose S is a translation surface and u ∈ R2 is a unit vector. The straight-line flow on
S in the direction u is the flow F t

u given in local coordinates by

F t
u(x, y) = (x, y) + tu.

Our translation surfaces will always be complete, so the straight-line flow of a point is defined
for all time unless the orbit hits a singularity.

Let S and S ′ be translation surfaces. A homeomorphism Â : S → S ′ is called an affine if
in each local coordinates chart ψ is of the form

ψ(x, y) = (ax+ by + t1, cx+ dy + t2) with A =

[
a b
c d

]
∈ GL(2,R) and t1, t2 ∈ R.

The constants t1 and t2 may depend on the chart. Because the transition functions are
translations, the matrix A is an invariant of ψ. We call this matrix the derivative, D(ψ) =
A ∈ GL(2,R).

There is a natural action of GL(2,R) on translation surfaces. If A ∈ SL(2,R) and S is
a translation surface, we define A(S) by composing each coordinate chart with the corre-
sponding linear map A : R2 → R2.

An affine automorphism of a translation surface S is an affine homeomorphism Â : S → S.
The collection of all affine automorphisms of S form a group, called the affine automorphism
group Aff (S). The group D

(
Aff (S)

)
⊂ GL(2,R) is called the Veech group of S and is

denoted Γ(S). An alternate definition of the Veech group is given by

Γ(S) = {A ∈ GL(2,R) : ∃ an affine homeomorphism ψ : A(S)→ S with D(ψ) = I}.

When S has finite area, Γ(S) ⊂ ŜL(2,R), the group of 2 × 2 matrices of determinant
±1. In this case, we will say that S has the lattice property if Γ(S) has finite covolume in

ŜL(2,R). In the compact case, this has the following strong consequence.

Theorem 2 (Veech Dichotomy [Vee89, §2]). If S is a compact translation surface with the
lattice property, then for all unit vectors u exactly one of the following holds.

• The straight line flow F t
u is completely periodic (all non-singular trajectories are pe-

riodic).
• The straight line flow F t

u is uniquely ergodic (there is only one invariant probability
measure).

3. Results

The following theorem describes the Veech groups of Sc.

Theorem 3 (Veech groups). The Veech groups Γ(Sc) ⊂ GL(2,R) for c ≥ 1 are generated by
the involutions −I,

Ac =

[
−1 0
0 1

]
, Bc =

[
−1 2
0 1

]
, and Cc =

[
−c c− 1
−c− 1 c

]
.
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For c = cos(2π
n

), it is a theorem of Veech that the elements given above generate Γ(Sc)
[Vee89], which is an (n

2
,∞,∞)-triangle group when n is even, and an (n, 2,∞) triangle group

when n is odd. We describe the relations in this matrix group below.
Note in particular, the surface S1 has the lattice property:

Corollary 4. The orientation preserving part of Γ(S1) is the congruence two subgroup of
SL(2,Z).

For all c, the matrices Ac, Bc, and Cc are involutions and act as reflections in geodesics in
H2 when projectivized to elements of Isom(H2) ∼= PGL(2,R). By the theorem, the groups
Γ(Sc) are all representations of the group

G± = (Z2 ∗ Z2 ∗ Z2)⊕ Z2 = 〈A,B,C,−I | A2 = B2 = C2 = I〉.
The geodesics associated to Ac and Cc intersect at angle 2π

n
when c = cos(2π

n
), are asymptotic

when c = 1, and disjoint and non-asymptotic for c > 1. See figure 4.

Figure 4. This figure shows the geodesics in the upper half plane model of
H2 that Ac, Bc, and Cc reflect in for c = cos π

4
, c = 1, and c = 5

4
from left to

right.

When c ≥ 1, it is clear that the triangle formed by the reflecting geodesics of Ac, Bc, and
Cc is a fundamental domain for the action of Γ(Sc), so the representations G± → Γ(Sc) ⊂
GL(2,R) are faithful when c ≥ 1. When n is even and c = cos(2π

n
), the triangle formed by

the reflecting geodesics is again a fundamental domain. Thus, Γ(Sc) is isomorphic to G±
modulo the relation (AcCc)

n
2 = −I. When n is odd, the element (AcCc)

bn
2
cAc reflects in a

geodesic orthogonal to the reflecting geodesic of Bc. In this case Γ(Sc) is isomorphic to G±
modulo the relations (AcCc)

n = I and [(AcCc)
bn
2
cAc, Bc] = −I.

Proposition 5. For all c ≥ 1, the map D : Aff (Sc)→ Γ(Sc) is a bijection.

Because of this proposition, an affine automorphism is uniquely determined by its deriva-
tive. This allows us to introduce the following notation:

Notation 6. Recall Γ(Sc) ∼= G± when c ≥ 1. Given G ∈ G± and c ≥ 1, we denote
the corresponding element of Γ(Sc) ⊂ GL(2,R) by Gc. Whenever the derivative map

D : Aff (S) → Γ(S) is a bijection, given A ∈ Γ(S), we use Â ∈ Aff (S) to denote the

corresponding affine automorphism Â : S → S.

We explicitly describe the topological action of generators for the affine automorphism
group Aff (Sc) in Lemma 10. The following theorem uses the family of homeomorphisms
hc,c′ : Sc → Sc′ in Proposition 1 to say that the affine automorphism groups act on each Sc
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in the same way. Note that because the singular points of Sc are infinite cone singularities,
any homeomorphism Sc → Sc′ must map singularities to singularities. In particular, when
two maps Sc → Sc′ are isotopic, they are isotopic by an isotopy which preserves singularities.

Theorem 7 (Isotopic Affine Actions). The homeomorphisms Sc → S ′c given by hc,c′ ◦ Ĝc and

Ĝc′ ◦ hc,c′ are isotopic for all G ∈ G± = Γ(Sc), c ≥ 1 and c′ ≥ 1.

The remaining results explain that the surfaces have the same geodesics in a combina-
torial sense. A saddle connection in a translation surface S is a geodesic segment joining
singularities with no singularities in its interior. We say two saddle connections σ and τ are
disjoint if σ ∩ τ is contained in the set of endpoints.

Theorem 8 (Isotopic triangulations). Suppose {σi}i∈Λ is a disjoint collection of saddle
connections in Sc for c ≥ 1 which triangulate the surface. Then for each c′ ≥ 1, there is a
disjoint collection of saddle connections {τi}i∈Λ and a homeomorphism Sc → S ′c isotopic to
hc,c′ so that σi 7→ τi for all i ∈ Λ.

We can use this theorem to show that all geodesics are the same combinatorially. To make
this rigorous, say that an interior geodesic in a translation surface S is a continuous map
γ0 : R → S so that γ0(R) contains no singularities, and in local coordinates γ0(a + t) =
γ0(a) + tu where u ∈ R2 is a unit vector. We call u the direction of γ0. We say γ : R → S
is a geodesic if it is an interior geodesics or a pointwise limit of interior geodesics. Geodesics
have directions; for a sequence of interior geodesics to converge pointwise, the directions
must converge. The point of this construction is to make the space of geodesics closed.

Let {σi}i∈Λ be a collection of disjoint collection of saddle connections in Sc which triangu-
late Sc for c ≥ 1. Suppose γ0 is an interior geodesic in Sc for which γ0(0) ∈

⋃
i∈Λ σi. Because

Sc is complete and triangulated, the set X = γ−1
0

(⋃
i∈Λ σi

)
⊂ R is discrete and bi-infinite.

So, there is a unique increasing bijection ψ : Z→ X so that ψ(0) = γ0(0). The coding of γ0 is
the bi-infinite sequence 〈en ∈ Λ〉n∈Z so that γ0◦ψ(n) ∈ σen . Since γ0 is interior, this sequence
is unique. If γ is a limit of interior geodesics γ0,k satisfying γ0,k(0) ∈ e0 then the coding of γ
is the limit of the codings of γ0,k. (This limit makes sense because the singularities of Sc are
not removable. For all n ∈ Z the sequence k 7→ γ0,k ◦ ψ(n) is eventually constant.) Every
geodesic on Sc can be reparameterized so that it is an interior geodesic with γ0(0) ∈

⋃
i∈Λ σi,

or is a limit of such interior geodesics.
Let Ωc ⊂ ΛZ denote the collection of codings of geodesics on Sc by the triangulation
{σi}i∈Λ. This set is shift invariant and closed, and thus a shift space. While it is a shift on
a countable alphabet, each symbol can be followed by only two other symbols.

The above theorem indicates that for c′ ≥ 1 there is a corresponding triangulation {τi}i∈Λ

of Sc′ . We can use this triangulation to code geodesics on Sc′ and construct a new shift space
Ωc′ ⊂ ΛZ.

Theorem 9 (Same geodesics). For each c ≥ 1 and c′ ≥ 1, the two shift spaces Ωc and Ωc′

are equal as subsets of ΛZ.

In other words, if γ is a geodesics on Sc, then there is a geodesic on S ′c with the same
coding, and vice versa.

The proofs of Theorems 8 and 9 hold more generally for deformations of translation sur-
faces with certain properties. See Lemmas 16 and 18. In particular, the same conclusions
hold for a family of surfaces related to the infinite staircase. See [HHW10].



AN INFINITE SURFACE WITH THE LATTICE PROPERTY 7

4. The affine automorphisms

In this section, we find and describe elements of the affine automorphism groups of the
surfaces Sc defined in the previous section. At this point, we cannot assume Theorem 3,
which described the generators of the Veech group. So, we use G±c ⊂ GL(2,R) to denote the
group generated by −I, Ac, Bc, and Cc. Our description of affine automorphisms implies that
that G±c ⊂ Γ(Sc). It also proves the Isotopic Affine Action Theorem, assuming Gc ∈ Γ(Sc)
implies Gc ∈ G±c (which turns out to be true).

To ensure our notation for affine automorphisms used in the previous section makes sense
we must prove Proposition 5.

Proof of Proposition 5. Suppose ψ ∈ Aff (Sc) satisfies D(ψ) = I. Then, ψ maps saddle
connections to saddle connections, and preserves their slope and length. In each surface Sc,
there is only one saddle collection of slope one with length

√
2. Therefore, ψ must fix all

points on this saddle connection. Since ψ fixes a non-singular point and D(ψ) = I, ψ must
be the identity map. �

It is useful to work with alternate generators for G±. Define the elements D = BA,
E = (−I)CB. The elements {A,D,E,−I} also are generators for G±. The corresponding
matrices in G±c are given by

(2) Dc =

[
1 2
0 1

]
Ec =

[
−c c+ 1
−c− 1 c+ 2

]
Note that Dc and Ec are orientation preserving parabolics.

Lemma 10 (Affine Automorphisms). For c ≥ 1, G±c ⊂ Γ(Sc). Moreover, the affine auto-
morphisms corresponding to generators of −I, Ac, Dc, Ec ∈ G±c may be described topologically
(up to isotopy) as follows.

• −̂Ic swaps the two pieces Q+
c and Q−c of Sc, rotating each piece by π.

• Âc is the automorphism induced by the Euclidean reflection in the vertical line x = 0,
which preserves the pieces Q+

c and Q−c of Sc and preserves the gluing relations.

• D̂c preserves the decomposition of Sc into maximal horizontal cylinders, and acts as
a single right Dehn twist in each cylinder.
• Êc preserves the decomposition of Sc into maximal cylinders of slope 1, and acts as

a single right Dehn twist in each cylinder.

Remark 11. The automorphism F̂c corresponding to the element

Fc = CcAc =

[
c c− 1

c+ 1 c

]
may be of special interest. The action of F̂c preserves the decomposition into two pieces, Q+

c

and Q−c . It acts on the top piece as Tc acts on the plane. (See equation 1). When c ≥ 1,
the surface Sc decomposes into a countable number of maximal strips in each eigendirection
of Fc. The action of F̂c preserves this decomposition into strips. We number each strip by
integers, so that each strip numbered by n is adjacent to the strips with numbers n± 1. This
numbering can be chosen so that the action of F̂c sends each strip numbered by n to the strip
numbered n + 1. So, the action of F̂c for c ≥ 1 is as nonrecurrent as possible. Given any
compact set K ⊂ Sc r Σ, there is an N so that for n > N , F̂ n

c (K) ∩K = ∅.
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We begin by stating a well known result that gives a way to detect parabolic elements
inside the Veech group. The idea is that a Dehn twist may be performed in a cylinder
by a parabolic. See figure 5. A cylinder is a subset of a translation surface isometric to
R/kZ× [0, h]. The ratio h

k
is called the modulus of the cylinder.

Proposition 12 (Veech [Vee89, §9]). Suppose a translation surface has a decomposition into
cylinders {Ci}i∈Λ in a direction θ. Suppose further there is a real number m 6= 0 such that
for every cylinder Ci, the modulus of Mi of Ci satisfies mMi ∈ Z. Then, there is an affine
automorphism of the translation surface preserving the direction θ, fixing each point on the
boundary of each cylinder, and acting as an mMi power of single right Dehn twist in each
cylinder Ci. The derivative this affine automorphism is the parabolic

Rθ ◦
[

1 m
0 1

]
◦R−1

θ ,

where Rθ ∈ SO(2) rotates the horizontal direction to direction θ.

ii

ii

Figure 5. The right cylinder is obtained by applying a shear to the left
cylinder. There is an affine homeomorphism from the right cylinder to the left
with derivative I. The composition of these maps is used in Proposition 12.

In the cases of D̂c and Êc, each Mi will be equal, hence we get an affine automorphism
which acts by a single right Dehn twist in each cylinder.

Proof of Lemma 10. Recall, the surface Sc for c ≥ 1 was built from two pieces Q+
c and Q−c .

We defined Q+
c to be the convex hull of the vertices Pi = T ic(0, 0) for i ∈ Z, with Tc as in

equation 1. Next Q−c was defined to be Q+
c rotated by π. Sc is built by gluing the edges of

Q+
c to its image under Q−c by parallel translation. Indeed, it is obvious from this definition

that the rotation by π which swaps Q+
c and Q−c restricts to an affine automorphism of the

surface, −̂Ic ∈ Aff (Sc). The derivative of −̂Ic is −Ic = −I, which therefore lies in Γ(Sc).

Now we will see that the reflection in the line x = 0 induces an affine automorphism (Â).
The reflection is given the map r : (x, y) 7→ (−x, y). Q+

c is preserved because r(Pi) = P−i,
which follows from the fact that r ◦ Tc ◦ r−1 = T−1

c . The reflection acts in the same way

on Q−c , and thus preserves gluing relations. Thus, Âc is an affine automorphism and its
derivative, Ac, lies in the Veech group.

We will show that each cylinder in the horizontal cylinder decomposition has the same
modulus, which will prove that D̂c lies in the affine automorphism group by proposition 12.
Let Pi = (xi, yi). The circumference of the n − th cylinder numbered vertically is given by
Cn = 2xn−1 + 2xn, and the height is Hn = yn − yn−1. Now let (xn−1, yn−1) = (x̂, ŷ), so that
by definition of Tc, we have (xn, yn) = (cx̂+ (c− 1)ŷ + 1, (c+ 1)x̂+ cŷ + 1). This makes

Cn = 2(c+ 1)x̂+ 2(c− 1)ŷ + 2 and Hn = (c+ 1)x̂+ (c− 1)ŷ + 1.

So that the modulus of each cylinder is 1
2
. It can be checked that the parabolic fixing the

horizontal direction and acting as a single right Dehn twist in cylinders of modulus 1
2

is given
by Dc.
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It is not immediately obvious that there is a decomposition into cylinders in the slope 1
direction. To see this, note that there is only one eigendirection corresponding to eigenvalue
−1 of the SL(2,R) part of the affine transformation

U : (x, y) 7→ (−cx+ (c− 1)y + 1,−(c+ 1)x+ cy + 1)

is the slope one direction. It also has the property that U ◦ Tc ◦ U−1 = T−1
c , which can be

used to show that U swaps Pi with P1−i. Therefore segment P1−iPi always has slope one.
The n-th slope one cylinder is formed by considering the union of trapezoid obtained by
taking the convex hull of the points Pn, Pn+1, P1−n and P−n and the same trapezoid rotated
by π inside Q−c . Now we will show that the moduli of these cylinders are all equal. The
circumference and height of the n-th cylinder in this direction is given below.

Cn =
√

2(xn − x1−n + xn+1 − x−n)

Hn =

√
2

2
(xn+1 − xn, yn+1 − yn) · (−1, 1)

Let Pn = (x̂, ŷ). Then Pn+1 = (cx̂ + (c − 1)ŷ + 1, (c + 1)x̂ + cŷ + 1), P1−n = ((−c)x̂ + (c −
1)ŷ + 1, (−c− 1)x̂+ cŷ + 1) and P−n = (−x̂, ŷ). We have

Cn =
√

2(2c+ 2)x̂ and Hn =
√

2x̂.

The modulus of each cylinder is 1
2c+2

. Thus by proposition 12, Êc lies in the affine automor-

phism group. Again, we leave it to the reader to check that the derivative of Êc must be
Ec. �

We now prove the Isotopic Affine Actions Theorem, assuming Theorem 3 which classifies
the Veech group.

Proof of Theorem 7. It is enough to prove the statement for the generators−I, A,D,E ∈ G±.

Let G be one of these generators. It can be observed that the affine actions Ĝc : Sc → Sc act

continuously on the bundle B of surfaces Sc over {c : c ≥ 1}. We must show that hc,c′ ◦ Ĝc

and Ĝc′ ◦ hc,c′ are isotopic. Let c′′ ≥ 1 be a number between c and c′. Consider the map

φc′′ : Sc → S ′c given by φc′′ = hc′′,c′ ◦ Ĝc′′ ◦ hc,c′′ . Continuously moving c′′ from c to c′ yields
the desired isotopy. �

5. A classification of saddle connections

In this section, we will classify the directions in Sc where saddle connections can appear.
We begin with S1.

We use the notation p
q
≡ r

s
(mod 2) to say that once the fractions are reduced to p′

q′
and

r′

s′
so that numerator and denominator are relatively prime, we have p′ ≡ r′ (mod 2) and

q′ ≡ s′ (mod 2). We use p
q
6≡ r

s
(mod 2) to denote the negation of this statement.

In the statement of the following proposition, we use the concept of the holonomy of a
saddle connection. Given any path γ : [0, 1] → S in a translation surface which avoids the
singularities on (0, 1), there is a development of γ into the plane. This is a curve dev(γ) :
[0, 1]→ R2 up to post-composition by with a translation, defined by following the local charts
from S to the plane. The holonomy vector hol(γ) is obtained by subtracting the endpoint of
dev(γ) from its starting point. The quantity hol(γ) is invariant under homotopies which fix
the endpoints. The notions of holonomy and the developing map are common in the world
of (G,X) structures; see section 3.4 of [Thu97], for instance.
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Proposition 13 (Saddle connections of S1). Saddle connections σ ⊂ S1 must have integral
holonomy hol1(σ) ∈ Z2. A direction contains saddle connections if and only if it has rational
slope, p

q
, with p

q
6≡ 1

0
(mod 2).

Proof. The holonomy of a saddle connection must be integral, because the surface S1 was
built from two (infinite) polygons with integer vertices. The subgroup G±1 ⊂ Γ(S1) (generated

by A1, D1, E1, and −I1) is the congruence two subgroup of ŜL
±

(2,Z). Thus, the linear action
of G±1 on the plane preserves the collection of vectors

RP = {(p, q) ∈ Z2 r {(0, 0)} | p and q are relatively prime}.
Furthermore, the orbits of (0, 1), (1, 1), and (1, 0) under Γ(S1) are disjoint and cover RP.
Thus, up to the affine automorphism group, the geodesic flow in a direction of rational slope
looks like the geodesic flow in the horizontal, slope one, or vertical directions. There are
saddle connections in both the horizontal and slope one directions, but not in the vertical
direction. Therefore, rational directions contain saddle connections unless they are in the
orbit of the vertical direction under G±1 . �

In order to make a similar statement for Sc, we will need to describe the directions that
contain saddle connections. We will find it useful to note that there is a natural bijective
correspondence between directions in the plane modulo rotation by π, and the boundary
of the hyperbolic plane ∂H2. This can be seen group theoretically. Directions in the plane
correspond to S1 = SL(2,R)/H where

H = {G ∈ SL(2,R) | G
( [ 1

0

] )
=

[
λ
0

]
for some λ > 0}.

Both directions mod rotation by π and the boundary of the hyperbolic plane correspond to
the real projective line, RP1 = SL(2,R)/H±, where

H± = {G ∈ SL(2,R) | G
( [ 1

0

] )
=

[
λ
0

]
for some λ 6= 0}.

Let S1 = (R2 r {(0, 0)})/R>0, be the collection of rays leaving the origin. Consider the
left action of the groups G±c on S1. We have the following.

Proposition 14 (Semi-conjugate actions). For all c > 1, there is a continuous (non-strictly)
monotonic map ϕc : S1 → S1 of degree one so that the following diagram commutes for all
G ∈ G±.

S1 Gc−−−→ S1yϕc yϕc
S1 G1−−−→ S1

We may also assume that φc preserves the horizontal ray {(x, 0) : x > 0} and the slope one
ray {(x, x) : x > 0}. The map φc commutes with the rotation of the plane by π.

Proof. Existence of this map follows from [Ghy87], for instance. The following is a more
natural proof using hyperbolic geometry.

Let G+ ⊂ G± be those elements G ∈ G± for which each det Gc = 1. This is an index
two subgroup and isomorphic to the product of the free group with two generators with
Z/2Z. We let G+

c = {Gc : G ∈ G+} ⊂ SL(2,R). And use PG+
c ⊂ PSL(2,R) to denote

the projectivized groups. The surfaces Σc = H2/G+
c and Σ1 = H2/G+

1 are thrice punctured
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spheres whose fundamental groups are canonically identified with G+. Let ψ : Σc → Σ1

be a homeomorphism which induces the trivial map between the fundamental groups (as
identified with G+). We may choose ψ so that it is invariant under the action of G±/G+

(which acts on each surface as a reflective symmetry). Since the fundamental groups are

identified, there is a canonical lift to a map between the universal covers ψ̃ : Σ̃c → Σ̃1 so
that ψ ◦G = G ◦ ψ for all G ∈ G+, where G is acting on the universal covers as an element
of the covering group. This also holds for elements G ∈ G± because of the G±/G+ invariance
of ψ. Now noting the canonical identification of these universal covers with H2 we have

ψ̃ : H2 → H2 so that ψ̃ ◦ Gc = G1 ◦ ψ̃ for all G ∈ G+. This map induces a continuous
monotonic degree 1 map on the boundary of the hyperbolic plane RP1. The desired map ϕc
is a lift of this map to the double cover S1 of RP1. �

The map ϕc is reminiscent of the famous devil’s staircase, a continuous surjective map
[0, 1]→ [0, 1] which contracts intervals in the compliment of a Cantor set to points. Indeed,
the limit set Λc of the group G±c is a G±c -invariant Cantor set, and the connected components
of the domain of discontinuity, RP1 r Λc, are contracted to points by ϕc.

We will see that the saddle connections in Sc and in S1 are topologically the same. We
will now make this notion rigorous. Given a path γ : [0, 1] → Sc, we use [γ] to denote the
equivalence class of paths which are homotopic to γ relative to their endpoints. We do not
allow these homotopies to pass through singular points.

Theorem 15 (Classification of saddle connections). There is a saddle connection in direction
θ ∈ S1 on Sc for c > 1 if and only if there is a saddle connection in the direction ϕc(θ) on S1.
Equivalently, θ contains saddle connections if and only if θ is an image of the horizontal or
slope one direction under an element of G±c = 〈−Ic, Ac, Dc, Ec〉. Furthermore, the collection
of homotopy classes containing saddle connections are identical in Sc and S1. That is, for
all saddle connections σ ⊂ Sc there is a saddle connection in the homotopy class [hc,1(σ)]
in S1, and for all saddle connections σ′ ⊂ S1 there is a saddle connection in the homotopy
class [h1,c(σ

′)] in Sc.

We will prove this theorem by first proving a more abstract lemma. Then we will demon-
strate that Sc and S1 satisfy the conditions of the lemma. We need the following two
definitions.

The wedge product between two vectors in R2 is given by

(3) (a, b) ∧ (c, d) = ad− bc.

This is the signed area of the parallelogram formed by the two vectors.
The function sign : R→ {−1, 0, 1} assigns one to positive numbers, zero to zero, and −1

to negative numbers.

Lemma 16. Let h : S → T be a homeomorphism between translation surfaces satisfying the
following statements.

(1) S admits a triangulation by saddle connections.
(2) For every saddle connection σ ⊂ S the homotopy class [h(σ)] contains a saddle

connection of T .
(3) Every pair of saddle connections σ1, σ2 ⊂ S satisfies

sign
(
hol(σ1) ∧ hol(σ2)

)
= sign

(
hol(h(σ1)) ∧ hol(h(σ2))

)
.
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Then, for every saddle connection σ ⊂ T , the homotopy class [h−1(σ)] contains a saddle
connection of S.

Proof. Let TS be the triangulation of S by saddle connections given to us by item 1. By
item 2, we we can straighten h(TS) to a triangulation TT of T by saddle connections.

We define the complexity of a saddle connection σ ⊂ T relative to the triangulation TT to
be the number of times σ crosses a saddle connection in TT . We assign the saddle connections
in TT complexity zero. Supposing the conclusion of the lemma is false, there exists at least
one saddle connection σ ⊂ T so that [h−1(σ)] contains no saddle connection of S. We may
choose such a saddle connection σ ⊂ T so that it has minimal complexity with respect to
TT . By the remarks above this minimal complexity must be at least one. The idea of the
proof is to reduce the general case (arbitrary complexity) to a case similar to the complexity
one case. In the complexity one case, σ passes through two triangles which form a convex
quadrilateral.

Figure 6. The saddle connection σ is developed into the plane along with
the triangles in TT that it intersects.

The saddle connection σ crosses through a sequence of triangles ∆0, . . . ,∆K of the trian-
gulation TT . We may develop the saddle connection σ into the plane along with the triangles.
We call the union of developed triangles the unfolding U . Without loss of generality, we may
assume that the developed image of σ is horizontal and the y-coordinate of points in this
image is zero. The sequence of saddle connections τ1, . . . , τK ∈ TT crossed by σ develop to
edges of the triangles with one endpoint above σ and one below σ. Call these endpoints top
and bottom vertices, respectively.

We will find a convex quadrilateral Q built out of saddle connections in T and contained
in the triangles crossed by σ. One diagonal of Q will be σ, and the edges of Q will be
saddle connections with complexity less than that of σ. Two of the vertices of the developed
image of Q must be the end points of σ. We choose one vertex v+ of Q to be a top vertex
with minimal y-coordinate. This choice guarantees that the convex hull (viewed in the
development) of σ and v+ is a triangle T+ contained U . Let τi be a saddle connection of TT
crossed by σ with top endpoint v+. For y < 0 let wy be the point on τi with y-coordinate
given by y. Consider the family of closed convex quadrilaterals Qy obtained by taking the
convex hull of v+, σ and wy. There is a largest y < 0 for which a bottom vertex v− appears
in Qy. The convex hull of σ, v+ and v− is the desired quadrilateral Q.



AN INFINITE SURFACE WITH THE LATTICE PROPERTY 13

The boundary of Q consists of four saddle connections ν1, . . . , ν4 with complexity relative
to TT less than that of σ. Because we assumed σ had minimal complexity, there are saddle
connections ν ′1, . . . , ν

′
4 ⊂ S in the homotopy classes [h−1(ν1)], . . . , [h−1(ν4])] respectively.

Finally, because of item 3, the saddle connections ν ′1, . . . , ν
′
4 in S must also form a strictly

convex quadrilateral Q′. The quadrilateral Q′ must then have diagonals, one of which lies
in the homotopy class [h−1(σ)]. See figure 7. �

Figure 7. To destroy a diagonal of a quadrilateral, the quadrilateral must be
made non-convex. This violates property 3 of lemma 16.

The following proposition implies the classification of saddle connections, Theorem 15.

Proposition 17. The homeomorphism hc,c′ : Sc → Sc′ satisfies the conditions of Lemma 16.

Proof. It is sufficient to prove that h1,c satisfies the conditions of the lemma, because we can
write hc,c′ = h−1

1,c ◦ h1,c′ . See Proposition 1. Note that if two homeomorphisms satisfy the
lemma, then so does their composition. In addition, if a h satisfies the lemma, then so does
h−1 (by the conclusion of the lemma applied to h). So, we will restrict to the case of h1,c.

Item 1 is trivial. We leave it to the reader to triangulate S1.
Item 2 follows from propositions 13. By proposition 13 all saddle connections of S1 are the

images of saddle connections in the horizontal and slope one directions under G±1 . Observe
that that for each saddle connection τ in the horizontal and slope one directions that appears
in S1, there is a saddle connection the homotopy class τ ′ ∈ [h1,c(τ)]. Let σ be an arbitrary

saddle connection in S1. Then, σ = Ĝ1(τ) for some saddle connection τ of slope zero or one

and someG ∈ G± with Ĝ1 denoting the corresponding affine automorphism. Let τ ′ ∈ [h1,c(τ)]
be the corresponding saddle connection in Sc. Then by Theorem 7,

σ′ = Ĝc(τ
′) ∈ Ĝc([h1,c(τ)]) = [h1,c ◦ Ĝ1(τ)] = [h1,c(σ)]

is the desired saddle connection in Sc.
Now we show item 3 holds. Let σ and σ′ be saddle connections in the surface S1. Let

θ0 = {(x, 0) : x > 0} and θ1 = {(x, x) : x > 0} be horizontal and slope one rays in S1. Then
we can choose α, α′ ∈ {θ0, θ1} and G1, G

′
1 ∈ G±1 such that the holonomies of these saddle

connections satisfy hol1(σ) ∈ G1(α) and hol1(σ′) ∈ G′1(α′). It follows that the corresponding
elements Gc, G

′
c ∈ G±c satisfy hol c ◦ h−1

1,c(σ) ∈ Gc(α) and hol c ◦ h−1
1,c(σ

′) ∈ G′c(α′). We must
prove that

sign
(
G1(α) ∧G′1(α′)

)
= sign

(
Gc(α) ∧G′c(α′)

)
,

where the sign of the wedge is computed using arbitrary representatives of the classes. This
follows essentially from Proposition 14 which defined the the map ϕc : S1 → S1. By this
proposition, the statement above is equivalent to

sign
(
φc ◦Gc(α) ∧ φc ◦G′c(α′)

)
= sign

(
Gc(α) ∧G′c(α′)

)
.
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Note that for any degree one continuous monotonically increasing map ψ : S1 → S1 which
commutes with rotation by π satisfies

sign
(
ψ(β) ∧ ψ(β′)

)
∈ {0, sign(β ∧ β′)}

for every β, β′ ∈ S1. In our setting, we have Gc(α) ∧ G′c(α′) 6= 0 if these two directions
are fixed by different parabolic subgroups of G±c . Note that if the directions G1(α) and
G′1(α′) are distinct, then they are fixed by different parabolic subgroups of G±1 . Then, by the
commutative diagram in Proposition 14, the two directions φc ◦ Gc(α) and φc ◦ G′c(α′) are
fixed by distinct parabolics subgroups of G±1 . Therefore φc ◦Gc(α) ∧ φc ◦G′c(α′) 6= 0. �

Now we prove Theorem 8, i.e. that the surfaces Sc and Sc′ admit the same triangulations.

Proof of Theorem 8. Let {σi}i∈Λ is a disjoint collection of saddle connections in Sc for c ≥ 1
which triangulate the surface. By Proposition 17, the homeomorphism hc,c′ satisfies the
conditions of Lemma 16. So, we can find geodesics σ′i ∈ [h(σi)] for all i. The collection
{σ′i}i∈Λ is also a disjoint collection of saddle connections in Sc′ which triangulate the surface.

We define h′c,c′ : Sc → S ′c to be the homeomorphism which acts affinely on the triangles,
and preserves the labeling of edges by Λ. We claim h′ is isotopic to hc,c′ . Because Lemma 16
is satisfied for the map hc,c′ for all pairs of surfaces, we can always do the above construction.
Therefore, we can think of h′c,c′ as well defined for all c ≥ 1 and c′ ≥ 1, and this family of
homeomorphisms satisfies the conclusions of Proposition 1. So, to see that hc,c′ is isotopic
to h′c,c′ , consider the isotopy given by hc,c′′ ◦ h′c′′,c′ as c′′ varies between c and c′. �

Similar logic will apply to the proof of Theorem 9, which says that codes of geodesics in
these surfaces are the same. This theorem follows from Proposition 17 together with the
following lemma.

Lemma 18. Suppose h : S → S ′ is a homeomorphism between translation surfaces satisfying
the three statements of lemma 16. Let {σi}i∈Λ be a disjoint collection of saddle connections
which triangulate of S and {σ′i}i∈Λ be saddle connections of S ′ so that σ′i ∈ [h(σi)] for all
i ∈ Λ. Then the shift spaces Ω,Ω′ ⊂ ΛZ which code geodesics using these triangulations in S
and S ′, respectively, are equal.

Proof. It suffices to prove that the same finite words appear in each space. We must show
that if γ is a finite geodesic segment which hits no singularities, then there is another geodesic
segment γ′ in S ′ which intersects the relevant saddle connections in the same order.

Let γ be a finite trajectory in S. To derive a contradiction, it would have to be that γ
crosses at least two saddle connections in {σi}i∈Λ. Develop γ into the plane, along with the
saddle connections it crosses. The sequence of saddle connections in the orbit-type develop
to a sequence of segments si in the plane. We define L to be the space of all lines in R2 that
cross through the interiors of each segment si. The slalom hull of the sequence 〈si〉 is

SH =
⋃
`∈L

`.

Clearly this slalom hull is non-empty, because the line containing the developed image of γ
lies in L. The boundary of the SH consists of four rays and a finite set of segments that
pull back to connections. Orient SH so that it is nearly horizontal as in the figure 8. Note
that R2 r SH consists of two convex components. We call the finite segments in the top
component of ∂SH the top chain. Similarly, the segments in the bottom component will be
called the bottom chain. Further, note there are diagonals, which are parallel to the infinite
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rays in ∂SH. They are formed by connecting the left-most vertex of the top chain to the
right-most vertex of the bottom chain, and vice versa. We call the union of the top chain,
the bottom chain, and the diagonals the saddle chain, and note that they form a loop.

a

b

A

B

Figure 8. On the left, The slalom hull of a sequence of solid segments is
rendered as the shaded polygon. The saddle chain is the sequence of dotted
lines. The right shows a deformation of the slalom chain. No deformation
of the slalom chain which preserves the cyclic ordering of edges in RP2 can
destroy the slalom hull.

Each ci in the saddle chain of S pulls back to a saddle connection σi of S. Let σ′i be the
corresponding saddle connections in S ′. By item 3 of lemma 16, the directions of saddle
connections σ′i must be in the same cyclic order as the directions for σi. We may develop
the saddle connections σ′i into the plane to obtain the chain of segments c′i. This chain of
segments has essentially the same combinatorics. Consider the sequence of segments given
by the diagonal running from top left to bottom right, and then moving across the top chain
from left to right, and ending with the other diagonal. Each segment must be rotated slightly
counterclockwise to reach the subsequent one. Thus, the region bounded by the top chain,
by the ray leaving the top left vertex in the direction of the diagonal, and the ray leaving the
top right vertex in the direction of the other diagonal must bound a convex set. Similarly,
there is another natural convex set bounded by the lower chain and some rays. The convex
sets may not intersect, because they are guaranteed to lie in two opposite quadrants of the
division of the plane by lines through the diagonals. Thus, we have an analogous set of lines
L′ which pass through the diagonals and not the lower and upper chains. The slalom hull
SH′ given by the same formula is non-empty.

We claim that SH′ is the slalom hull for the segments {s′i}. This is equivalent to saying
that no endpoint of a segment s′i lies within SH′, which will imply our theorem. Some of the
locations of endpoints are determined, because they are endpoints of segments in the chain
{c′i}.

Suppose B ∈ R2 rSH is a endpoint of a segment si in the development of S which crosses
one of the edges in the slalom hull, b ∈ ∂SH. See figure 8. Let B′ be the corresponding
endpoint of the segment s′i in the development from S ′. Then B′ cannot be in SH′, lest it
destroy the segment c′i, which must pull back to a saddle connection in S ′. (Intersections
between saddle connections are essential, in the sense that if two saddle connections intersect,
then so must any pair of curves in the associated homotopy classes).
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The more difficult case is when A ∈ R2 r SH is an endpoint of a segment si in the
development S which crosses one of the rays in ∂SH. Without loss of generality, assume the
ray crossed is the upper left ray in the development. Let a be the diagonal element of the
slalom chain that is parallel to this ray, and a′ the corresponding element in the development
of S ′. We consider the canonical homotopy class of S, with the cone singularities removed, of
paths joining the pull back of the top left vertex in ∂SH to the pull back A. This homotopy
class should contain the path which develops to follow the ray of ∂SH leaving the top left
vertex until it hits the segment si and then follows si to A. Let d be the infimum of the
lengths of paths in this homotopy class. There is a limiting path p ⊂ S that may pass
through singularities, that achieves this infimum. This path consists of a sequence of saddle
connections, and turns only rightward in total angle less than π. The initial segment of the
developed image of p must immediately leave SH, hence its orientation when compared to
a is determined. Let p′ be the corresponding chain of saddle connections in S ′, which must
likewise turn rightward by total angle less than π. The initial segment of the developed
image of p′ must immediately leave SH′, because its orientation when compared to a′ must
match that of the case in S. Moreover, since p′ only bends rightward, the path cannot return
to SH′. This concludes the argument that SH′ is the slalom hull for the segments {s′i}. We
know this contains lines, any of which contain a segment which pulls back to a trajectory γ′

in S ′ with the same orbit type as γ in S. �

6. No other affine automorphisms

The last step to the proof of Theorems 3 and 7 is to demonstrate that all affine automor-
phisms of the surface lie in the group generated by the elements we listed.

Lemma 19. All affine automorphisms of the surface Sc are contained in the group generated

by −̂Ic, Âc, D̂c, and Êc.

Proof. Let us suppose that for some c ≥ 1 there is an M ∈ GL(2,R) in the Veech group

Γ(Sc) and a corresponding element M̂ in the affine automorphism group Aff (Sc). We will

prove that M̂ lies in the group generated by the four elements −̂Ic, Âc, D̂c, and Êc.
Let θ = {(x, 0) : x > 0} ∈ S1 be the horizontal direction. We know that the image

M(θ) must contain the holonomies of saddle connections of Sc. Further more the horizontal
and slope one directions can be distinguished, since the smallest area maximal cylinder in
the horizontal direction has two cone singularities in its boundary, while the smallest area
maximal cylinder in the slope one direction has four cone singularities in its boundary. Thus,
by theorem 15, there must be an element Nc ∈ G±c satisfying M(θ) = Nc(θ). It follows that
N−1
c ◦M preserves the horizontal direction.

There must be a corresponding element element N̂−1
c ◦ M̂ ∈ Aff (Sc) with derivative

N−1
c ◦M . The automorphism must fix the decomposition into horizontal cylinders, and fix

each cylinder in the decomposition (because the cylinders have distinct areas). The smallest
area horizontal cylinder is isometric in each Sc. It is built from two triangles, the convex
hull of (0, 0), (1, 1), and (−1, 1) and the same triangle rotated by π, with diagonal sides of

the first glued to the diagonal sides of the second by translation. N̂−1
c ◦ M̂ ∈ Aff (Sc) must

preserve this cylinder and permute the pair of cone singularities in the boundary. Therefore

N−1
c ◦M =

[
1 2n
0 1

]
= Dn

c or N−1
c ◦M =

[
1 −2n
0 −1

]
= −I ◦ Ac ◦Dn

c
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for some n ∈ Z. Therefore, M = Nc ◦Dn
c or M = Nc ◦ −I ◦ Ac ◦Dn

c , all of which lie in G±c .

Therefore, by Proposition 5, the corresponding affine automorphism satisfies M̂ = N̂c ◦ D̂n
c

or M̂ = N̂c ◦ −̂I ◦ Âc ◦ D̂n
c . �
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